Generalisations of Chevalley Restriction Theorem

Fix a reductive Lie algebra of over
$$C$$
 of
char o.
Fix Cartan h, $exp(g) = G$, Weyl group W

Starting with closed embedding $h \longrightarrow q$ we can construct a map $\mathbb{C}[q] \longrightarrow \mathbb{C}[h]$ which is surjective.

Restricting this map to invariant polynomials,

$$C[q]^G \longrightarrow C[h]^{N_G(h)}$$

 $= C[h]^W$

Chevalley restriction theorem:
The map
$$\phi: \mathbb{C}[o_{J}]^{G} \longrightarrow \mathbb{C}[h]^{W}$$
 is an icomorphism.
OR

There is an isomorphism of schemes
$$h/\!\!/ W \longrightarrow J/\!\!/ G_1$$
.

Example: $o_{f} = o_{fln}$, h = Diagonal, $W = S_n$

ie 1.

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} \lambda \\ \lambda \\ \lambda \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda \\ \lambda \\ \lambda \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

If
$$t \rightarrow 0$$
, we get $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$ in the orbit closure.

· Orbits of diagonal matrices are closed because of Cayley - Hamilton theorem and the fact that the min poly has no repeated roots.

Proofs of CRT: (of = gln)
I) Prove that
$$\phi$$
 is injective and surjective.
Injectivity: Suppose $f \in \mathbb{C}[q]^G$ $stf/fo.$
 $\Rightarrow f((G,h)) = 0$

But G. h is dense in
$$g:$$

 $\Longrightarrow f = 0$
Surjectivity:
 $c \lfloor h \rfloor^{W}$ is generated as an algebra by the
dementary functions
 $b_{k} = d_{1}^{k} + d_{2}^{k} + \dots + d_{n}^{k}$.
But, this is exactly the image of the folg:
 $T_{k}(A^{+})$.
I) $h/\!/W \longrightarrow g/\!/G$ is a closed embedding:
It is a bijection on C-valued points.
 $g/\!/G$ is reduced.
Hence, it's an isomorphism.
II) Construct an inverse map
 $c \lfloor h \rfloor^{W} \longrightarrow c \lfloor g \rfloor^{G}$.
To be done later.

III) Construct an inverse map
$$C[h]^{W} \longrightarrow C[g]^{G}$$

To be done later.

Taking associated graded wint this filtration,

ge (Noz) = Symoz, gr (Uh) = Symh CRT: (Symg) ~~ (Symh) W ge (Ug) G gr (reh)^W gr(UgG) gr(Uh^W) 11 gr (Zg) gr (Symh^W) Theorem: (Harishchandra) There exists an icomolphism Zoz ~> (Symh) W. (I'm being slightly hand -wavy about the twieting.) Generalisations: What if we consider everything in pairs ? $h \times h \longrightarrow q \times q$ So, we get a map $p_2: C[q \times q]^G \longrightarrow C[h \times h]^W.$ Is this an isomorphism ? Example: of = gln $h \times h \longrightarrow q \times q$ ~~> (h x h) // W ---> (g x of) //G

a-points in LHS = W-oubits in hxh

yet known to

Not a reduced schene!
Let
$$C_2(q)^{nd}$$
 by the underlying reduced scheme

Consider
$$(h \times h) / W \longrightarrow C_2(\sigma_1)^{ud} / G$$
.
Claim: This is a bijection on $C - points$.

Theorem:
$$C[C_2(q)^{nd}]^G \longrightarrow C[h \times h]^W$$

is an isomorphism.

So, we have

$$f[hxh]^{W} \xrightarrow{\sim} f[c_2(q)^{Md}]^{G} \xrightarrow{R} C[c_1(q)]^{G}$$
.

Theorem: R is an isomorphism when:
a)
$$\overline{q} = \overline{ql_n}$$
 Domohon, Vaccasino, Gan-Ginzburg
b) $\overline{q} = Sp_{2n}$ Chan-Chen, Losen
 $[GG]: C_2(q_n)//G$ is reduced.
 $[L]: C_2(sp_n)//G$ is reduced.
Construction of the Spectral data map:
Take $\overline{q} = gl_n$.
We want to construct
 $C[h^d]^W \longrightarrow C[C_d(q_n)]^G = R$
Consider the polynomia in $R: X_{ij,k}$
 $I \leq i, j \leq n, I \leq k \leq d$

Considu the polynomial algebra
$$C[t_1, \dots, t_d]$$

and the associative algebra $gl_n(R)$.

$$\begin{aligned}
\Theta: \mathbb{C}\left[t_{1}, \ldots, t_{d}\right] &\longrightarrow gl_{u}\left(R\right) \\
& t_{1}^{n_{1}} \ldots t_{d}^{n_{d}} &\longmapsto A_{1}^{n_{1}} \ldots A_{d}^{n_{d}} \\
& A_{k} = \left(x_{ij}, k\right) \\
& \xi: \mathbb{C}\left[t_{1}, \ldots, t_{d}\right] \longrightarrow R \\
& f \longmapsto dut \left(\theta(f)\right)
\end{aligned}$$

This is a polynomial map of degree n.
We want to construct

$$G[f_{A}^{a}]^{W} \longrightarrow R$$

 $\left(C[t_{1}, t_{1}, ..., t_{d}]^{\bigotimes n} \right)^{S_{n}}$
Theorem: (Roby) Let M and N be C-algebras and
 $\varphi: M \longrightarrow N$
be a multiplicative polynomial map of degree n.
Then, Ξ a lift $\overline{\varphi}: (M^{\bigotimes n})^{S_{n}} \longrightarrow N$.
 $S \cdot t \cdot \overline{\varphi} (m \otimes m \dots \otimes m) = \varphi(m).$

$$\begin{array}{rcl} Proof: & & \in \mathbb{C}\left[M\right]_{n} \otimes N \\ & \cong & \operatorname{Sym}^{n}\left(M^{*}\right) \otimes N \\ & \cong & \operatorname{Hom}\left(\operatorname{Sym}^{n}\left(M^{*}\right)^{*}, N\right) \\ & \cong & \operatorname{Hom}\left(\operatorname{Sym}^{n}\left(M\right), N\right) \\ & = & \operatorname{Hom}\left(\left(M^{\otimes n}\right)^{\operatorname{Sn}}, N\right). \end{array}$$

$$\mathbb{G}[v] \cong \mathcal{S}_{ym}v^*$$

Fience, we get a map
$$\overline{\phi}: C[h^d]^{W} \longrightarrow R.$$

$$\begin{aligned} f_{Xample} : Take d = 1. \\ & \varphi : \mathcal{L}[t] \longrightarrow \mathcal{C}[q]^{G} \\ & f(t) \longmapsto dut (f(A)) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

By construction,

$$t \otimes t \otimes \dots \otimes t \longrightarrow det (A)$$

 $(t - A) \otimes \dots \otimes (t - A) \longrightarrow det (A - AI)$
Coeff · of A^{i} on the left = $Gym(t \otimes t \dots \otimes t \otimes 1 \dots \otimes 1)$
 $(-i)^{i}$
 $(-i)^{i} e_{n-i}$
Coeff of A^{i} on the right = i^{th} coeff · of characteristic
 $poly$.

. The above construction of the spectral data map is highly specific to of = gln. What about other of ?

Construction of the spectral data map for
$$sp_m$$
:
Let V be a symplectic vector space of dim $2n$.
Then, $gl(V) = sp(V) \oplus g'(V)$

$$x \in cp(v) \iff w(v, xw) = -w(xv, w)$$

 $x \in q'(v) \iff w(v, xw) = w(xv, w)$

We want to construct

$$C[h^d]^W \longrightarrow C[Ca(q)]^G = R$$

$$\phi: \mathcal{C}[t_1, \dots, t_d] \text{ even } \longrightarrow \mathcal{R}$$

$$f \longrightarrow \mathcal{P}f(\vartheta(f))$$
By Roby, $\overline{\phi}: (\mathcal{C}[t_1, \dots, t_d] \text{ even })^{S_n} \longrightarrow \mathcal{R}$

$$(\mathbb{C}[t_1,\ldots,t_d]^{\otimes n})^{\operatorname{Sn} \times (\mathbb{Z}/2)^n}$$

Key step: Show that the Pfaffian is multiplicative.
Theorem: (Chan-Chun)

$$G[K^d]^N \longrightarrow C[C_d(q)]^G$$
.

We can try to construct

$$\mathcal{D}(o_{1})^{G} \longrightarrow \mathcal{D}(\mathcal{L}^{M}g)^{W}$$

 $\int twisting$
 $HC: \mathcal{D}(o_{1})^{G} \longrightarrow \mathcal{D}(\mathcal{L})^{W}$

Theorem: (Lawoussum - Stafford)

$$\frac{\mathcal{Q}(q)^{G}}{\mathbb{I}} \xrightarrow{\sim} \mathcal{Q}(h)^{W}$$

Theorem: $\mathcal{Q}(q)^{G} \xrightarrow{\sim} \mathcal{Q}(h)^{W}$
is where the ideal $\mathbb{I} = (ad g \cdot \mathcal{Q}(g))^{G}$
Easy calculation: $gr(\mathbb{I}) \subseteq \mathbb{C}[g \times g]^{G}$
 $\|$
exactly the radical ideal defining the commuting scheme.

$$\mathbb{C}\left[\binom{2}{2}\binom{\eta}{M}, \binom{3}{6} \xrightarrow{\sim} \mathbb{C}\left[k \times k\right]^{W}.$$

Symmetric pairs

Let of be reductive and $\tau: \sigma_J \longrightarrow \sigma_J$ be an involution.

Then,
$$q = k \oplus p$$

s.t. $[k, k] \subseteq k$,
 $[k, p] \subseteq p$,
 $[p, p] \subseteq k$
 (q, k) is called a symmetric pair.

2) Bilinear forms:

$$(q, k) = (ql_{2n}, So_{2n}), (ql_{2n}, Sp_{2n})$$

Let
$$k = \text{Lie}(k)$$
, $\beta = \text{Lie}(P)$.
Then, $k \cap p$.
Then exists $h \leq \beta$
 \longrightarrow maximal subspace of painwise
commuting semiainfle channels.
All such choices of h are conjugate
under k .
Define $W := N_k(h) / C_k(h)$
Little Weyl group of the fair (q, k) .
Griven $h \longrightarrow \beta$, we can construct
 $C[\beta]^k \longrightarrow C[h]^W$
Theorem : The map $C[\beta]^k \longrightarrow C[h]^W$ is an
isomorphism.
Theorem : (Pattanayak, Nadimfalli)
 $C[C_d(p)]^k \longrightarrow C[h^d]^W$ is
an isomorphism for all the classical fairs
above except $(So_n \times So_n, So_n)$ and
 (So_{2n}, gl_n) .

Another direction of generalisation:

Let G - reduction act on an affine, normal, irreducible variety X. Let $a \in X//G$ be a principle point and let $x \in \pi^{-1}(a)$ $\pi: X \longrightarrow X//G$ s.t. orbit of x is closed. Define $W := N_G(G_X)/G_X$, where G_X is the centralises of x.

Then,

Theorem:

$$C[x] \xrightarrow{\sim} C[x^{G_x}]^{H}$$

Principal point : $a \in X//G$ is called frincipal if there is a neighborrhood $a \in U \subseteq X//G$ $S \cdot t$: for all $b \in U$, the closed orbit points above a and b have conjugate centralisees.