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Main result

• Ringel, Green (1995)
Uv (g

+
Q) →֒ Hall(Q −mod)

• Bridgeland (2013)
Uv (gQ) →֒ Hall(P2(Q −mod))

• G.-Samuelson (2025)

Uv (ŝl2)1,1 →֒ Hall(QRud/R −mod) →֒ Hall(sl2-modrest)



Hall algebras

C - Small abelian finitary category (All Hom and Ext groups are finite)
HC - C-vector space with basis given by [M], where M ∈ Ob(C)/ ∼
Define an algebra structure on HC as follows:

[M] · [N] :=
∑

R

PR
M,N [R],

where,
PR
M,N := |{L ⊆ R : L ≃ N,R/L ≃ M}|,

and extended linearly on HC .

Easy exercise

This product is associative.

The C-algebra HC is called the Hall algebra of the category C.



Fq - Finite field of size q = pn (odd)
Q - Quiver without oriented cylces
C - Category of f.d. representations of Q over Fq.
HQ - Hall algebra of C

Example 1: Q = A1

This is the quiver with a single vertex with no arrows.

C ≃ Vect =⇒ HQ ≃ C[t]



Example 2: Q = A2

1 2

Q has two simple representations: S1 and S2, each suppoerted at the respective vertex.

[S2] · [S1] = [S1 ⊕ S2]

[S1] · [S2] = [S1 ⊕ S2] + [P],

where P is the indecomposable representation:

Fq Fq
Id .

An easy computation shows that:

[S1]
2 · [S2]− (q + 1)[S1] · [S2] · [S1] + q[S2] · [S1]

2 = 0,

[S2]
2 · [S1]− (q + 1)[S2] · [S1] · [S2] + q[S1] · [S2]

2 = 0.



AQ - Adjacency matrix of Q
CQ := 2I − AQ - Euler matrix of Q

This matrix CQ is a generalized Cartan matrix, and so, we can associate with it a
(possibly infinite-dimensional) Kac-Moody Lie algebra gQ .

Its universal enveloping algebra U(gQ) has a canonical quantization as a Hopf algebra,
denoted by Uv (gQ), and called the quantum Kac-Moody Lie algebra.



Explicitly, we can describe Uv (gQ) as the C(v)-algebra generated by
{Ei ,Fi ,K

±1
i }i∈vertex(Q) satisfy the relations:

KiKj = KjKi (1)

KiEjK
−1
i = v cijEj (2)

KiFjK
−1
i = v−cijFj (3)

[Ei ,Fj ] = δi ,j
Ki − K−1

i

v − v−1
(4)

1−cij
∑

l=0

(

1− cij
l

)

v

E l
i EjE

1−cij−l

i = 0 (5)

1−cij
∑

l=0

(

1− cij
l

)

v

F l
i FjF

1−cij−l

i = 0. (6)

The subalgebra generated by the Ei ’s is denoted by Uv (g
+
Q) and is called the positive part

of Uv (gQ).



Suppose the product on the Hall algebra HQ is twisted as follows:

[M] ∗ [N] := q〈M,N〉/2[M] · [N],

where the additive Euler form 〈·, ·〉 is defined via:

〈M,N〉 = dim(Hom(M,N))− dim(Ext1(M,N)).

Theorem (Ringel, Green)

Specializing at v = q1/2, there exists an injective (Hopf) algebra homomorphism:

ΦQ : Uv (g
+
Q) → HQ ,

where we use the twisted product on the Hall algebra. Furthermore, the above map is an
isomorphism exactly when Q is an ADE quiver (with arbitrary orientation).



A limitation of the previous construction is that it only produces ‘half’ of the quantum
group. Algebraically, the whole quantum group can be obtained from either of its ‘halves’
via a Drinfeld double construction. Morally, this Drinfeld double should be some invariant
of a 2-periodic version of the derived category Db(C).



An approach by Bridgeland: Let P2(C) be the category of 2-periodic complexes of
projective objects in C. Define the algebra:

DH(C) :=
HP2(C)[[M•]

−1 : H∗(M•) = 0]

([M•]− 1 : H∗(M•) = 0,M• ≃ M•[1])
.

Theorem (Bridgeland)

Specializing at v = q1/2, there exists an injective algebra homomorphism:

ΦQ : Uv (gQ) → DH(C).

Furthermore, the above map is an isomorphism exactly when Q is an ADE quiver (with
arbitrary orientation).



Representation theory of sl2

C - Category of restricted representations of sl2 := sl2(Fq)
Explicitly, if sl2 = Fq〈e, f , h〉, the category C consists of those those sl2-representations
which are annihilated by the elements:

ep, f p, hp − h

in the universal enveloping algebra Usl2. It is well known that the category C is not
semisimple.

Weyl Modules

Vn := Fq[x , y ]n for some n ≥ 0
We have a natural sl2-action on Vn:

e 7→ y∂x , f 7→ x∂y , h 7→ y∂y − x∂x .

The spaces Vn are known as Weyl modules.



Theorem (Jacobson)

1. Vn is an indecomposable representation for all n ∈ Z≥0.

2. Vn is a simple representation if and only if n < p.

3. The set {V0,V1, . . . ,Vp−1} is a complete list of simple objects in the category C.

Theorem (Pollack)

1. Vp−1 is both projective and injective in C. In particular, for all i ,

Ext1(Vi ,Vp−1) = Ext1(Vp−1,Vi ) = 0.

2. For 0 ≤ i , j ≤ p − 2,

dim(Ext1(Vi ,Vj)) =

{

2 if i + j = p − 2

0 otherwise
.



Example

Fix i , j such that i + j = p − 2. Consider the representation:

Vp+i = Fq〈x
p+i , xp+i−1y , · · · , xpy i , xp−1y i+1, · · · , x i+1yp−1, x iyp, · · · , xyp+i−1, yp+i 〉



Example

Fix i , j such that i + j = p − 2. Consider the representation:

Vp+i = Fq〈x
p+i , xp+i−1y , · · · , xpy i , xp−1y i+1, · · · , x i+1yp−1, x iyp, · · · , xyp+i−1, yp+i 〉

Both of the sets of highlighted vectors span subrepresentations of Vp+i that are
isomorphic to Vi . Furthermore, the quotient of Vp+i by these subrepresentations is
isomorphic to Vj .



Pollack’s theorem implies that we can express the category C as a direct sum:

C = C̃ ⊕

(p−3)/2
⊕

i=0

Ci ,

where,
Ci - The subcategory of C generated by Vi and Vp−2−i under extensions
C̃ - The subcategory generated by Vp−1

As a result, the Hall algebras of these categories are related via the equality:

HC = HC̃ ⊗

(p−3)/2
⊗

i=0

HCi .



As the category C̃ is equivalent to Vect, the algebra HC̃ is isomorphic to a polynomial
algebra in one variable.

Theorem (Rudakov)

For all 0 ≤ i ≤ (p − 3)/2, the category Ci is equivalent to the category Rep(QRud/R),
where:

QRud = • •

e

f

e′

f ′
,

and the set R of relations is given by:

ee ′ = ff ′ = 0, e ′e = f ′f = 0

ef ′ = fe ′, e ′f = f ′e.



The existence of such a quiver and relations follows from the fact that every finite
dimensional algebra is Morita equivalent to the path algebra of its Ext-quiver modulo
some quadractic relations.

Example

Suppose i and j are such that i + j = p − 2.
V - An extension of Vm

i by V n
j

By Pollack, we know:

Ext1(V n
i ,V

m
j ) ≃ Ext1(Vi ,Vj)

mn ≃ (F2
q)

mn ≃ (Fmn
q )2.

This gives a representation of the above quiver QRud having dimension (m, n): The maps
e and f can be defined by using these matrices, whereas the maps e ′ and f ′ are taken to
be zero.



Hall algebra of the Rudakov quiver modulo relations

Goal

Understand the Hall algebra H of the category Rep(QRud/R).

QRud = α β

e

f

e′

f ′

ee ′ = ff ′ = 0, e ′e = f ′f = 0

ef ′ = fe ′, e ′f = f ′e.

One of the first steps towards understanding this Hall algebra is to classify the
indecomposable objects in Rep(QRud/R).



Theorem (Pollack, Rudakov)

All the indecomposable objects in Rep(QRud/R) can be classified as:

• Representations where e ′ = f ′ = 0

• Representations where e = f = 0

• Two exceptions M and M ′(described below) that are both injective and projective in
Rep(Qrud/R)

Let V = Fq〈x1, x2〉 and W = Fq〈y1, y2〉 be two-dimensional vector spaces.

M :=

x1 y1

x2 y2

e

f

e′

f ′

The representation M ′ is obtained from M by flipping along the vertical axis.



The above classification suggests that the algebra H should be close to being the doubled
version of the Hall algebra of the Kronecker quiver:

Kron = α β
e

f .

Ringel’s theorem implies:

ΦKron : Uv (g
+
Q) → HKron,

where gQ is the affine Lie algebra ŝl2.

Guess/Hope

The Hall algebra H should be related to the whole quantum affine algebra Uv (ŝl2).



Quantum loop algebras

Recall that the quantum affine algebra Uv (ŝl2) is generated by eight elements
{Ei ,Fi ,K

±1
i }i=0,1, satisfying certain relations.

For g simple (for example g = sl2), the affine Lie algebra ĝ can be realised as the
universal central extension of the loop algebra Lg = g⊗ C[t, t−1]. This universal
extension has a different presentation given by Garland, that involves infinitely many
generators and relations.

The Garland presentation can be deformed to get a new presentation for Uv (ŝl2).



Theorem (Beck, Drinfeld)

The quantum affine algebra Uv (ŝl2) is isomorphic to the quantum loop algebra Uv (Lsl2),
which is the C(v)-algebra generated by elements El ,Fl ,Hn,K

±1,C±1/2 for
l ∈ Z, n ∈ Z \ {0} satisfying the following relations:

C 1/2 is central

KEkK
−1 = v2Ek ,KFkK

−1 = v−2Fk ,KHnK
−1 = Hn

Ek+1El − v2ElEk+1 = v2EkEl+1 − El+1Ek

Fk+1Fl − v−2FlFk+1 = v−2FkFl+1 − Fl+1Fk

[Hl ,Ek ] =
[2l ]

l
C−|l |/2Ek+l

[Hl ,Fk ] =
−[2l ]

l
C |l |/2Fk+l

[Hl ,Hk ] = δl ,−k
[2l ]

l

C l − C−l

v − v−1



Theorem (Contd.)

[Ek ,Fl ] =
C (k−l)/2Ψk+l − C (l−k)/2Φk+l

v − v−1

where the elements Ψk and Φk are defined via the following generating series:

∑

k≥0

Ψku
k = Kexp

(

(v − v−1)
∞
∑

k=1

Hku
k

)

∑

k≥0

Φ−ku
k = K−1

exp

(

−(v − v−1)
∞
∑

k=1

H−ku
k

)

.

Remark

By the work of Burban and Schiffmann, the above isomorphism can be interpreted
geometrically in terms of the derived equivalence between the category of representations
of the Kronecker quiver and category of coherent sheaves on P

1.



Shifted quantum loop algebra

‘Shifted’ versions of quantum groups (specifically, truncated quantum Yangians) appeared
in the works of Braverman, Finkelberg and Nakajima as a tool to describe quantized
Coulomb branches of 3-D N = 4 supersymmetry quiver gauge theories, in terms of
generators and relations.

Definition (Finkelberg, Tsymbaliuk)

For any integers b1, b2, there exists a shifted quantum loop algebra Uv (Lsl2)b1,b2 , which
has exactly the same generators and relations as Uv (Lsl2), except we define:

ub1
∑

k≥−b1

Ψku
k = Kexp

(

(v − v−1)

∞
∑

k=1

Hku
k

)

ub2
∑

k≥−b2

Φ−ku
k = K−1

exp

(

−(v − v−1)
∞
∑

k=1

H−ku
k

)

.



The shifted quantum loop algebra Uv (Lsl2)1,1 turns out to be the ’correct’ doubled

version of the algebra Uv (ŝl2
+
) that is relevant for describing the Hall algebra H of

Rep(QRud/R).
Define the twisted Hall algebra Htw which has the multiplication:

[V ] ∗ [W ] := q− det(dim(V ),dim(W ))/2[V ] · [W ],

for any V ,W ∈ Ob(Rep(QRud/R)).

Theorem (G.-Samuelson)

There exists an injective algebra homomorphism:

Φ : Uv (Lsl2)1,1 → Htw ,

when v is specialized to q1/2.



Idea of Proof

We describe what the homomorphism Φ maps the generators of Uv (Lsl2)1,1 to.

C 1/2 7→ [M ′]1/4 ∗ [M]−1/4

K 7→ −([M ′] ∗ [M])−1/4

For the generators En,Fn and Hn, map them to representations where:

• e ′ = f ′ = 0 if n ≥ 0

• e = f = 0 if n ≤ 0.



Theorem

Indecomposable representations of the Kronecker quiver over a field F are of three types:

• Pre-projective representations:

Pn := F n F n+1
e

f ,

where e is the inclusion into the first n coordinates of F n+1, f is the inclusion into
the last n.

• Pre-injective representations:

In := F n+1 F n
e

f ,

where e is the projection onto the first n coordinates of F n+1, f is the projection
onto the last n.



Theorem (Contd.)

• Regular representations:

F n F n
e

f ,

where one of e or f is the identity map, and the other is given by an indecomposable
n × n matrix over F .

Remark

Translating back to the category of restricted representations of sl2, the representations In
and Pn exactly correspond to the Weyl modules.

When n ≥ 0, the homomorphism Φ ‘roughly’ maps:

• En to [In]

• Fn to [Pn]

• Hn to a weighted average of regular representations having dimension (n, n).



The inclusion of the Kronecker quiver into the Rudakov quiver induces a functor:

F : Rep(Kron) → Rep(QRud/R),

which is given by extension by zero on e ′ and f ′. This functor is fully faithful and exact
and induces a map between the Ext groups for any A,B ∈ Ob(Rep(Kron)):

F : Ext1(A,B) → Ext1(F (A),F (B)).

While the functor F does not induce a morphism of Hall algebras, we do have the
following:

Proposition

Then, the map F is an isomorphism, unless A is a pre-projective representation and B is a
pre-injective representation. Furthermore, if the map is not an isomorphism, then either A
or B must be a simple representation.



Consequences

• There exists a functor:

G : Rep(QRud) → Rep(QRud/R),

which is given by killing those representations where the relations in R do not hold.
The functor G induces a morphism on the level of Hall algebras.

By Ringel’s theorem, we know that HQRud
contatins the positive part of a certain

quantum Kac-Moody Lie algebra with Cartan matrix:

(

2 −4
−4 2

)

.

Then, the above map allows us to transport relations from this Kac-Moody algebra
to the algebra Uv (Lsl2)1,1. In particular, we get that the 5-th v -commutator of E0

with F0 vanishes, and vice-versa.



Consequences

• On the new presentation of the quantum loop algebra Uv (Lsl2), Drinfeld defined a
topological co-product which makes it a topological bialgebra. This co-product can
be naturally extended to shifted versions of the quantum loop algebra. Our theorem
allows us to view this co-product on Uv (Lsl2)1,1 as a version of Green’s co-product
on the Hall algebra.
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Thank You!
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