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Hall algebras

C : Small abelian finitary category (All Hom and Ext groups are finite)
HC : C-vector space with basis given by [M], where M ∈ Ob(C)/ ∼
Define an algebra structure on HC as follows:

[M] · [N] :=
∑

R

PR
M,N [R],

where,
PR
M,N := |{L ⊆ R : L ≃ N,R/L ≃ M}|,

and extended linearly on HC .

Easy exercise

This product is associative.

The C-algebra HC is called the Hall algebra of the category C.



Fq : Finite field of size q = pn

Q : Quiver without oriented cylces
C : Category of f.d. representations of Q over Fq.
HQ : Hall algebra of C

Example 1: Q = A1

This is the quiver with a single vertex with no arrows.

C ≃ Vect =⇒ HQ ≃ C[t]



Example 2: Q = A2

1 2

Q has two simple representations: S1 and S2, each supported at the
respective vertex.

[S2] · [S1] = [S1 ⊕ S2]

[S1] · [S2] = [S1 ⊕ S2] + [P],

where P is the indecomposable representation:

Fq Fq
Id .

An easy computation shows that:

[S1]
2 · [S2]− (q + 1)[S1] · [S2] · [S1] + q[S2] · [S1]

2 = 0,

[S2]
2 · [S1]− (q + 1)[S2] · [S1] · [S2] + q[S1] · [S2]

2 = 0.



AQ : Adjacency matrix of Q
CQ(:= 2I − AQ) : Euler matrix of Q

This matrix CQ is a generalized Cartan matrix, and so, we can
associate with it a (possibly infinite-dimensional) Kac-Moody Lie
algebra gQ .

Its universal enveloping algebra U(gQ) has a canonical quantization as
a Hopf algebra, denoted by Uv (gQ), and called the quantum
Kac-Moody Lie algebra.



Explicitly, we can describe Uv (gQ) as the C(v)-algebra generated by
{Ei ,Fi ,K

±1
i }i∈vertex(Q) satisfy the relations:

KiKj = KjKi (1)

KiEjK
−1
i = v cijEj (2)

KiFjK
−1
i = v−cijFj (3)

[Ei ,Fj ] = δi ,j
Ki − K−1

i

v − v−1
(4)

1−cij∑

l=0

(
1− cij

l

)

v

E l
i EjE

1−cij−l

i = 0 (5)

1−cij∑

l=0

(
1− cij

l

)

v

F l
i FjF

1−cij−l

i = 0. (6)

The subalgebra generated by the Ei ’s is denoted by Uv (g
+
Q) and is

called the positive part of Uv (gQ).



Suppose the product on the Hall algebra HQ is twisted as follows:

[M] ∗ [N] := q〈M,N〉/2[M] · [N],

where the additive Euler form 〈·, ·〉 is defined via:

〈M,N〉 = dim(Hom(M,N))− dim(Ext1(M,N)).

Theorem (Ringel, Green)

Specializing at v = q1/2, there exists an injective (Hopf) algebra
homomorphism:

ΦQ : Uv (g
+
Q) → HQ ,

where we use the twisted product on the Hall algebra. Furthermore,
the above map is an isomorphism exactly when Q is an ADE quiver
(with arbitrary orientation).



A limitation of the previous construction is that it only produces ‘half’
of the quantum group. Algebraically, the whole quantum group can
be obtained from either of its ‘halves’ via a Drinfeld double
construction. Morally, this Drinfeld double should be some invariant
of a 2-periodic version of the derived category Db(C).

An approach by Bridgeland: Let P2(C) be the category of 2-periodic
complexes of projective objects in C. Objects of this category can be
viewed as C-valued representations of the quiver:

α β
e

e′
,

satisfying the relations: ee ′ = e ′e = 0.



Define the algebras:

DH := HP2(C)[[M•]
−1 : M• is acyclic].

DHred := DH/([M•]− 1 : M• is acyclic and shift invariant).

Theorem (Bridgeland)

Specializing at v = q1/2, there exists an injective algebra
homomorphism:

ΦQ : Uv (gQ) → DHred(C).

Furthermore, the above map is an isomorphism exactly when Q is an
ADE quiver (with arbitrary orientation).



One could try to pursue the above result in the category of 2-periodic
bicomplexes instead:

...
...

. . . W V . . .

. . . V W . . .

...
...

e′

f

e

f ′



In terms of a quiver, the above category can be thought of as
representations of the following quiver:

QRud := • •

e

f

e′

f ′

with the following relations R :

ee ′ = ff ′ = 0, e ′e = f ′f = 0

ef ′ = fe ′, e ′f = f ′e.

Remark

The above quiver and relations show up in the description of the
blocks of the category of restricted representations of the Lie algebra
sl2 over positive characteristic.



Shifted quantum affine algebras

The quiver

QRud := • •

e

f

e′

f ′

can be thought of as a doubled version of the Kronecker quiver:

QK := • •
e

f

Thus, one might expect the Hall algebra of QRud to be a doubled
version of the Hall algebra of QK .



Definition (Finkelberg, Tsymbaliuk)

The shifted quantum affine algebra Uv (ŝl2)b1,b2 is isomorphic to the
quantum for b1, b2 ∈ Z is the C(v)-algebra generated by elements
El ,Fl ,Hn,K

±1,C±1/2 for l ∈ Z, n ∈ Z \ {0} satisfying:

C 1/2 is central

KEkK
−1 = v2Ek ,KFkK

−1 = v−2Fk ,KHnK
−1 = Hn

Ek+1El − v2ElEk+1 = v2EkEl+1 − El+1Ek

Fk+1Fl − v−2FlFk+1 = v−2FkFl+1 − Fl+1Fk

[Hl ,Ek ] =
[2l ]

l
C−|l |/2Ek+l

[Hl ,Fk ] =
−[2l ]

l
C |l |/2Fk+l

[Hl ,Hk ] = δl ,−k
[2l ]

l

C l − C−l

v − v−1



Definition (Contd.)

[Ek ,Fl ] =
C (k−l)/2Ψk+l − C (l−k)/2Φk+l

v − v−1

where the elements Ψk and Φk are defined via the following
generating series:

ub1
∑

k≥−b1

Ψku
k = Kexp

(
(v − v−1)

∞∑

k=1

Hku
k

)

ub2
∑

k≥−b2

Φ−ku
k = K−1

exp

(
−(v − v−1)

∞∑

k=1

H−ku
k

)
.



The shifted quantum affine algebra Uv (ŝl2)1,1 turns out to be the
relevant object for describing the Hall algebra H of Rep(QRud/R).
Define the twisted Hall algebra Htw which has the multiplication:

[V ] ∗ [W ] := q− det(dim(V ),dim(W ))/2[V ] · [W ],

for any V ,W ∈ Ob(Rep(QRud/R)).

Theorem (G.-Samuelson)

There exists an injective algebra homomorphism:

Φ : Uv (ŝl2)1,1 → Htw ,

when v is specialized to q1/2. The image of this map is exactly the
spherical subalgebra of the Hall algebra.



Idea of Proof

Theorem

All the indecomposable objects in Rep(QRud/R) can be classified as:

• Representations where e ′ = f ′ = 0

• Representations where e = f = 0

• Two exceptions M and M ′(described below) that are both
injective and projective in Rep(Qrud/R)

Let V = Fq〈x1, x2〉 and W = Fq〈y1, y2〉 be two-dimensional vector
spaces.

M :=

x1 y1

x2 y2

e

f

e′

f ′

The representation M ′ is obtained from M by flipping along the
vertical axis.



We describe what the homomorphism Φ maps the generators of
Uv (ŝl2)1,1 to:

C 1/2 7→ [M ′]1/4 ∗ [M]−1/4

K 7→ [M ′]−1/4 ∗ [M]−1/4

For the generators El ,Fl and Hl , map them to representations where:

• e ′ = f ′ = 0 if l ≥ 0

• e = f = 0 if l ≤ 0.



Theorem

Indecomposable representations of the Kronecker quiver over a field F
are of three types:

• Pre-projective representations:

Pn := F n F n+1
e

f ,

where e is the inclusion into the first n coordinates of F n+1, f is
the inclusion into the last n.

• Pre-injective representations:

In := F n+1 F n
e

f ,

where e is the projection onto the first n coordinates of F n+1, f
is the projection onto the last n.



Theorem (Contd.)

• Regular representations:

F n F n
e

f ,

where one of e or f is the identity map, and the other is given by
an indecomposable n × n matrix over F .

When l ≥ 0, the homomorphism Φ ‘roughly’ maps:

• El to [Il ]

• Fl to [Pl ]

• Hl to a weighted average of regular representations having
dimension (l , l).

Remark

Regular representations come in families that are indexed by
irreducible polynomials over Fq,and the subalgebra generated by
representations in any such family is a quantum Heisenberg algebra.



The inclusion of the Kronecker quiver into the Rudakov quiver
induces a functor:

F : Rep(Kron) → Rep(QRud/R),

which is given by extension by zero on e ′ and f ′.This functor is fully
faithful and exact and induces a map between the Ext groups for any
A,B ∈ Ob(Rep(Kron)):

F : Ext1(A,B) → Ext1(F (A),F (B)).

While the functor F does not induce a morphism of Hall algebras,we
do have the following:

Proposition

Then, the map F is an isomorphism, unless A is a pre-projective
representation and B is a pre-injective representation.Furthermore, if
the map is not an isomorphism, then either A or B must be a simple
representation.



Thank You!
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