

13/06/22

Motivation: orbit method

$G \rightarrow$ connected Lie group

Goal: Classify unitary G -irreps

Kirillov (1961) Orbit method

$\mathfrak{g} = \text{Lie}(G)$ $G \curvearrowright \mathfrak{g}^*, \mathfrak{g}^{*}$
adjoint, coadjoint repr.

Theorem: (Kirillov) If G is nilpotent, simply connected,
 $\{\text{unitary } G\text{-irreps.}\}$ iso. $\xrightarrow{\sim}$ $\{G\text{-orbits in } \mathfrak{g}^*\}$
natural

Why should coadjoint orbits appear in this classification?

Answer: Quantization (connection between classical and quantum mechanical systems)

Quantum

Classical

Phase

Hilbert

\mathbb{I}

Space

Space

Symmetry

Unitary
representation

II

Most

symmetric

The rep. is

irreducible

G acts

transitively

I \rightarrow Manifold M with Poisson bracket:

\mathbb{R} -linear $\{ \cdot, \cdot \} : C^\infty(M) \times C^\infty(M) \rightarrow C^\infty(M)$

s.t. • $\{ \cdot, \cdot \}$ is a Lie bracket.

• Leibniz: $\{ fg, h \} = \{ f, h \} g + \{ g, h \} f$

to give $\{ \cdot, \cdot \} \leftrightarrow$ bivector field P with certain properties

s.t. $\{ f, g \} := \langle P, df \wedge dg \rangle$

Special case: ω is a symplectic form on M

($d\omega = 0$, non-degenerate)

\rightsquigarrow bivector $\omega^{-1} \rightsquigarrow \{ \cdot, \cdot \}$

\hookrightarrow non-degenerate Poisson structure.

II \rightarrow Lie group $G \curvearrowright M$ preserving $\{ \cdot, \cdot \}$ and

"Hamiltonian"

$G \curvearrowright M \rightsquigarrow G$ -equiv. linear map

$$\mathfrak{g} \rightarrow \text{Vect}(M)$$

$$\xi \mapsto \xi_M$$

Def: The classical comoment map is a G -equivariant linear map $\phi: \mathfrak{g} \rightarrow C^\infty(M)$ s.t.

$$\xi_M = \{ \phi(\xi), \cdot \} \quad \forall \xi \in \mathfrak{g}$$

Dually, we get a moment map $\nu: M \rightarrow \mathfrak{g}^*$

$$\langle \nu(m), \xi \rangle := [\phi(\xi)](m).$$

- $G \curvearrowright M$ is Hamiltonian if $\{ \cdot, \cdot \}$ is G -invariant and we've fixed a comoment map.

(If G is connected, the G -invariance follows from the existence of the comoment map.)

Exercise 1: Show that ϕ is a Lie algebra homomorphism, i.e. $\phi([\xi, \eta]) = \{ \phi(\xi), \phi(\eta) \} \quad \forall \xi, \eta \in \mathfrak{g}$.

Example: \mathfrak{g}^* is Poisson with unique $\{ \cdot, \cdot \}$ s.t.

$$\{ \xi, \eta \} := [\xi, \eta] \quad \forall \xi, \eta \in \mathfrak{g} \subseteq C^\infty(\mathfrak{g}^*)$$

Then, this action $G \curvearrowright \mathfrak{g}^*$ is Hamiltonian with

$$\phi(\xi) = \xi \quad (\text{equivalently, } \nu = \text{Id})$$

Transitive Hamiltonian actions

Exercise 2 : $\alpha \in \mathfrak{g}_\alpha^*$ $\rightsquigarrow M = G\alpha$. Want to construct

$$P_{G\alpha} \in \Gamma(\Lambda^2 T_M).$$

i.e. 1) $P \in \Gamma(\Lambda^2 T_{\mathfrak{g}^*})$. Then, $P_{G\alpha} \in \Lambda^2 T_{G\alpha}$ and is non-degenerate there, uniquely extends to a G -invariant $P_{G\alpha} \in \Gamma(\Lambda^2 T_{G\alpha})$, which is Poisson.

2) $\omega_\alpha := P_{G\alpha}^{-1}$ is the unique G -equivariant 2-form satisfying $\omega_\alpha(\xi_\alpha, \eta_\alpha) = \langle \alpha, [\xi, \eta] \rangle$.

3) $G \curvearrowright G\alpha$ is Hamiltonian with $\nu: G\alpha \hookrightarrow \mathfrak{g}^*$ the inclusion map.

Exercise 3 : Let M be a Poisson manifold with transitive Hamiltonian $G \curvearrowright M$. Then,

1) $\text{Im}(\nu) \subseteq \mathfrak{g}^*$ is a single orbit

2) $\nu: M \rightarrow \text{Im}(\nu)$ is a cover and is Poisson, i.e. $\nu^*: C^\infty(\text{Im}(\nu)) \rightarrow C^\infty(M)$ intertwines $\{\cdot, \cdot\}$.

3) The Poisson structure on M is non-degenerate and ν is a symplectomorphism.

Conclusion : Transitive \longleftrightarrow G -equivariant covers
Hamiltonian actions of coadjoint orbits

• Exercise* : Given the Hamiltonian action of a Lie group

on a simply connected manifold, then it can be seen as an action of a central extension.

So, the orbit method predicts a connection:

$$\left\{ \begin{array}{l} \text{Equivariant } G\text{-covers} \\ \text{of coadjoint orbits} \end{array} \right\} \xrightarrow{\text{Quantization}} \left\{ \begin{array}{l} \text{unitary } G\text{-} \\ \text{reps} \end{array} \right\}$$

- If G is nilpotent, this is a bijection.
(There are no complex G -covers.)
- If G is semisimple, this isn't a bijection.

eg: If G is compact,

unitary reps. = finite dim. reps.

(classified by highest wt.s)

$$\begin{array}{ccc} \text{Also, as} & \xrightarrow{\text{(co-)adjoint}} & \\ G \text{ is semisimple} & \text{orbits} & \xleftarrow{\sim} \text{Weyl chambers} \end{array}$$

filtered quantizations (of algebras)

Many algebras of interest for geometric representation theory arise as filtered quantizations.

Setting: A is f.g. commutative \mathbb{C} -algebra s.t.

1) A is $\mathbb{Z}_{\geq 0}$ -graded $A = \bigoplus_{i=0}^{\infty} A_i$ (as vector spaces)

s.t. $A_i A_j \subseteq A_{i+j}$

2) Poisson compatibility $\{.,.\} : A \times A \rightarrow A$

3) $\exists \alpha \in \mathbb{Z}_{>0}$ s.t. $\text{degree}(\{.,.\}) = -\alpha$ i.e.

$$\{A_i, A_j\} \subseteq A_{i+j-\alpha}$$

Examples:

1) \mathfrak{g} \rightarrow f.d. Lie algebra, $A = S(\mathfrak{g})$ ($= \mathbb{C}[\mathfrak{g}^*]$).
 $\exists ! \{.,.\}$ on A s.t. $\{\xi, \eta\} = [\xi, \eta]$ with
usual grading and $\alpha = 1$.

2) V \rightarrow symplectic vector space with form ω .

$A = S(V)$ ($= \mathbb{C}[V^*]$), usual grading.

$\exists ! \{.,.\}$ s.t. $\{u, v\} = \omega(u, v)$ $\forall u, v \in V$
and $\alpha = 2$.

Defⁿ: (Filtered quantization of A) This is a pair (A, \leq)
where:
• A is an associative \mathbb{C} -algebra with an algebra
filtration $A = \bigvee_{i=0}^{\infty} A_{\leq i}$ (as vector spaces) s.t.
 $1 \in A_{\leq 0}$ and $A_{\leq i} A_{\leq j} \subseteq A_{i+j}$ $\forall i, j$
and $\text{degree}([., .]) \leq -\alpha$ i.e.

$$[A_{\leq i}, A_{\leq j}] \subseteq A_{i+j-\alpha}$$

(now $\text{gr } A = \bigoplus_{i=0}^{\infty} A_{\leq i} / A_{\leq i-1}$, which is a Poisson
algebra with

$$\left\{ \underset{\mathfrak{A}_{\leq i}}{\underset{\cap}{\underset{A_{\leq i}}{\underset{\cap}{\underset{A_{\leq j}}{\underset{\cap}{\{ a + A_{\leq i-1}, b + A_{\leq j-1}, \}}}}}} = [a, b] + A_{\leq i+j-\alpha-1} \right\}$$

• $i: \text{gr } (\mathfrak{A}) \rightarrow \mathfrak{A}$ is an isomorphism of graded Poisson algebras.

Def: An isomorphism of filtered quantizations (\mathfrak{A}, i) , (\mathfrak{A}', i') is a filtered algebra isomorphism $\psi: \mathfrak{A} \rightarrow \mathfrak{A}'$

s.t. $\text{gr } \psi: \text{gr } \mathfrak{A} \xrightarrow{\sim} \text{gr } \mathfrak{A}'$

$$\begin{array}{ccc} & \downarrow i & \downarrow i' \\ \mathfrak{A} & & \mathfrak{A}' \end{array}$$

Examples:

1) $\mathfrak{A} = \mathfrak{S}(\mathfrak{g})$

Then, $\mathfrak{A} = \mathfrak{U}(\mathfrak{g})$ is a filtered quantization by PBW theorem.

2) $\mathfrak{A} = \mathfrak{S}(V)$

Then, $\mathfrak{A} = \mathfrak{W}(V) = T(V) / \left(u \otimes v - v \otimes u - w(u, v) \right)$
(the Weyl algebra) $u, v \in V$

is the unique filtered quantization. (Exercise.)

Problem: Given \mathfrak{A} , classify its filtered quantizations upto isomorphism.

→ Cannot solve without additional restrictions on \mathfrak{A} .

Restriction = "symplectic singularities"

We'll care about A coming from "nilpotent orbits" in s.s. Lie algebras. The restriction holds in that setting.

Nilpotent orbits (in s.s. Lie algebras)

$G \rightarrow$ connected, s.s. algebraic group / \mathbb{C}

$\mathfrak{g} = \text{Lie}(G)$, $\mathfrak{g} \stackrel{\sim}{=} \mathfrak{g}^*$ via the Killing form

So, adjoint orbits = $\overset{G}{\text{coadjoint orbits}}$.

$G \curvearrowright \mathfrak{g}$ with all orbits symplectic (algebraic) varieties.
even \downarrow dim.

Def: $\xi \in \mathfrak{g}$ is nilpotent if it is represented by a nilpotent operator in some (any) faithful \mathfrak{g} -rep.

Remark: 1) If \mathfrak{g} is classical ($= \mathfrak{sl}_n, \mathfrak{so}_n, \mathfrak{sp}_n$), then nilpotent elements = nilpotent matrices.

2) For $g \in G$, $\xi \in \mathfrak{g}$,

ξ is nilpotent $\Leftrightarrow \text{Ad}(g)\xi$ is nilpotent.

So, we can talk about nilpotent orbits.

Question: How to classify nilpotent orbits?

?

Lie alg. homo. $\mathfrak{sl}_2 \rightarrow \mathfrak{g}$.

Def: An sl_2 -triple in \mathfrak{g} is a triple $(e, h, f) \in \mathfrak{g}$ satisfying the defining relations of sl_2 , i.e. the map $\phi: sl_2 \rightarrow \mathfrak{g}$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mapsto e, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mapsto h, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mapsto f$$

is a Lie algebra homomorphism.

Exercise: e (& f) are nilpotent.

Theorem 1: (Jacobson - Morozov) If nilpotent $e \in \mathfrak{g}$ can be included into an sl_2 -triple.

Theorem 2: (Kostant) If $(e, h, f), (e', h', f')$ are sl_2 -triples, then $\exists g \in G$ s.t.

$$\text{Ad}(g)e = e, \text{Ad}(g)h = h', \text{Ad}(g)f = f'.$$

Corollary: The map

$$\left\{ \begin{array}{l} \text{conjugacy classes} \\ \text{of } sl_2 \rightarrow \mathfrak{g} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \text{nilpotent orbits} \\ \text{in } \mathfrak{g} \end{array} \right\}$$

$$(e, h, f) \longmapsto e$$

is a bijection.

Example: $\mathfrak{g} = \mathfrak{sl}_n$ (nilpotent orbits \leftrightarrow partitions of n)

by taking Jordan type

$sl_2 \rightarrow \mathcal{O}$ are just n -dim sl_2 -reps.

Conjugacy classes = isom classes of sl_2 -reps

n -dim sl_2 -rep. is $\bigoplus_{i=1}^k V(d_i)$

↪ d_i -dim rep. of sl_2 .

↔ partitions $((d_1, \dots, d_k))$

$c \in sl_2$ acts by one Jordan block on every rep.

Hence, the above corollary reduces to the usual linear algebraic classification.

Exercise: If (e, h, f) and (e, h, f') are sl_2 -triples,
then $f = f'$.

Take $G = Sp_n$ or O_n

O_n isn't simply connected

$$O_n / SO_n \cong \mathbb{Z}/2\mathbb{Z}$$

Propⁿ: Nilp. G -orbits in \mathcal{O}
is

Partitions of n where every even (for O_n), odd (for Sp_n)
part has even multiplicity.

Remark: A nilp. orbit for O_n splits into two SO_n -orbits
⇒ all parts of the corresponding partition are
even.

Next, we discuss the algebras $\mathbb{C}[\mathcal{O}]$ - regular (a.k.a.

polynomial functions), \mathbb{O} is a nilp. G -orbit in \mathfrak{g} .

Theorem : $\mathbb{C}[\mathbb{O}]$ is finitely generated, graded and has Poisson bracket of degree -1.

Proof (sketch) : $\mathbb{O} \rightarrow$ symplectic variety
 $\rightsquigarrow \mathbb{C}[\mathbb{O}]$ is equipped with a Poisson bracket.

Fact 1: # of nilpotent orbits in \mathfrak{g} is finite.

(Exercise : # of conjugacy classes of Lie alg. homo)
 $\mathfrak{g} \rightarrow \mathfrak{g}'$ for arbit s.s. Lie algebras is finite.

It is clear that $\mathbb{C}[\bar{\mathbb{O}}]$ is finitely generated.

Exercise : The nilpotent cone $\mathcal{N} = \{ \xi \in \mathfrak{g} : \xi \text{ is nilp.} \}$
is Zariski closed.

$\bar{\mathbb{O}} \setminus \mathbb{O}$ consists of nilpotent orbits, of which there are finitely many and all have an even dimension.
 $\Rightarrow \text{codim}_{\bar{\mathbb{O}}} (\bar{\mathbb{O}} \setminus \mathbb{O}) \geq 2$.

Fact 2: Let X be an affine irreducible variety. Let $X^0 \subseteq X$ be a smooth open subvariety s.t.

$\text{codim}_x (x \setminus x^\circ) \geq 2$. (Eq : $x = \bar{0}$, $x^\circ = 0$.)

Then, $\mathbb{C}[x^\circ]$ is the normalization of $\mathbb{C}[x] \Rightarrow \mathbb{C}[x^\circ]$ is finitely generated.

Hence, $\mathbb{C}[0]$ is finitely generated.

Next, there is an action of \mathbb{C}^* on \mathcal{O} by dilations.
 $t \cdot \xi = t^{-1}\xi$.

Then, \mathcal{O} is \mathbb{C}^* -stable. (Follows from the classification in classical types).

$\mathbb{C}^* \curvearrowright \mathcal{O} \rightsquigarrow$ grading on $\mathbb{C}[\mathcal{O}]$.

Exercise: The degree of the Poisson bracket is -1 .

(Follows by following the defⁿ. of $\{ \cdot, \cdot \}$ in terms of the symplectic form.)

14/06/22

Equivariant covers of nilpotent orbits

Let $e \in \mathfrak{g}$ be nilpotent and $H = Z_G(e)$.

An equivariant cover of $G \cdot e = G/H$ is G/H' s.t.
 $H \supseteq H' \supseteq H^\circ$ are subgroups of finite index.

Hence,

equivariant covers \longleftrightarrow subgroups of
of $G \cdot e$ $Z_G(e)/Z_G(e)^\circ$

Exercise: 1) $Z_G(e) = Z_G(e, h, f)$ & unipotent

reductive connected

2) $Z_G(e)/Z_G(e)^\circ \simeq Z_G(e, h, f)/Z_G(e, h, f)^\circ$

Prop": $G = \mathrm{SL}_n, \mathrm{O}_n, \mathrm{Sp}_n$. Let $\mathcal{O} = G \cdot e \subseteq \mathfrak{g}$ be a nilpotent orbit with partition $(1^{d_1}, \dots, n^{d_n})$.
(subscripts are multiplicities)

1) $G = \mathrm{SL}_n \rightsquigarrow Z_G(e, h, f) \simeq \{ (g_1, \dots, g_n) \in \prod_{i=1}^n \mathrm{GL}(d_i) \text{ s.t. } \det(g_i)^{d_i} = 1 \}$

Then, $Z_G(e, h, f)/Z_G(e, h, f)^\circ \simeq \frac{\mathbb{Z}}{\text{GCD}(i : d_i \neq 0)}$

2) $G = \mathrm{O}_n$ or $\mathrm{Sp}_n \rightsquigarrow Z_G(e, h, f) = \prod_{i=1}^n G_i$, where

$G_i = \begin{cases} \mathrm{O}_{d_i} & \text{if } G = \mathrm{O}_n \text{ and } i \text{ is odd} \\ & \text{or} \\ & G \text{ is } \mathrm{Sp}_n \text{ and } i \text{ is even} \\ \mathrm{Sp}_{d_i} & \text{otherwise} \end{cases}$

$$So, Z_G(e, h, f) / Z_G(e, h, f)^\circ \cong (\mathbb{Z}/2\mathbb{Z})^a,$$

where $a = \#$ of 0 factors

$$= \begin{cases} \# \{ \text{odd } i \text{ with } d_i \neq 0 \} & \text{for } G = O_n \\ \# \{ \text{even } i \text{ with } d_i \neq 0 \} & \text{for } G = Sp_n \end{cases}$$

Example : $G = Sp_n$, \mathbb{O} corresponding to $(2, 1^{n-2})$

$$Z_G(e) / Z_G(e)^\circ \cong \mathbb{Z}/2\mathbb{Z}$$

Then, a 2-fold cover of \mathbb{O} is given by $\mathbb{C}^n \setminus \{0\}$.

Theorem : Let $\tilde{\mathbb{O}}$ be G -equivariant cover of \mathbb{O} . Then, $\mathbb{C}[\tilde{\mathbb{O}}]$ is finitely generated, graded, Poisson.

Sketch of proof :

- It is Poisson because $\tilde{\mathbb{O}}$ is symplectic.
(Because \mathbb{O} is symplectic).
- The morphism $\tilde{\mathbb{O}} \rightarrow \mathbb{O}$ has finite fibres

So, there exists a Stein factorization :

$$\begin{array}{ccc} \tilde{\mathbb{O}} & \longrightarrow & \mathbb{O} \\ & \searrow & \nearrow \\ & X & \end{array}$$

$X = \text{Spec}(\text{integral closure of } \mathbb{C}[\mathbb{O}] \text{ in the fraction field of } \mathbb{C}[\tilde{\mathbb{O}}])$.

Then, $X \rightarrow \mathbb{O}$ is finite and $\tilde{\mathbb{O}} \xrightarrow{\text{open}} X$.

$\rightsquigarrow X \setminus \tilde{\mathcal{O}} \subseteq X$ has codim. 2.

(as $\text{codim}_{\tilde{\mathcal{O}}} \bar{\mathcal{O}} \setminus \mathcal{O} \geq 2$)

$\tilde{\mathcal{O}}$ is smooth, and so, (by a fact from last time) $\mathcal{C}[\tilde{\mathcal{O}}] = \mathcal{C}[x]$, which is f.g.

To show that $\mathcal{C}[\tilde{\mathcal{O}}]$ is graded, we note that it's possible to lift $\mathbb{C}^* \curvearrowright \bar{\mathcal{O}}$ to $\tilde{\mathcal{O}}$ after rescaling.

(That is, $z \cdot \xi = z^{-d} \xi$ for suitable d).

Singular Symplectic Varieties

Defⁿ: If X is a smooth algebraic variety, then X is symplectic if it has a symplectic form.

$\Rightarrow X$ is Poisson, \mathcal{O}_X has $\{ \cdot, \cdot \}$.

Beauvreille (2000): Notion of symplectic for singular Poisson varieties.

Defⁿ: Let X be a Poisson variety. We say X is (singular) symplectic (has symplectic

singularities) if:

- i) X is normal (and X is irreducible)
- ii) The Poisson structure on X^{reg} is non-degenerate.

Let ω^{reg} be the symplectic form on X^{reg} .

- iii) \exists resolution of singularities $\pi: Y \rightarrow X$
(i.e., Y is smooth, π is proper, birational)
s.t. $\pi^* \omega^{\text{reg}}$ (a 2-form on $\pi^{-1}(X^{\text{reg}})$)
extends to a (regular) 2-form on Y .

Remarks:

- Beauville showed that if (iii) holds for some resolution, it is true for all resolutions.
- If $\pi^* \omega^{\text{reg}}$ extends to a non-degenerate form on Y , we call Y a symplectic resolution of X .

Examples:

- i) Symplectic quotient singularities
 $V \rightarrow$ f.d. symplectic vector space with form ω .

Let $\Gamma \subseteq \text{Sp}(V)$ be a finite subgroup.

Construct $X = V/\Gamma = \text{Spec}(\mathbb{C}[V]^\Gamma)$.

Γ preserves $\{\cdot, \cdot\}$ on $\mathbb{C}[V]$

$\Rightarrow \mathbb{C}[V]^\Gamma$ is a Poisson subalgebra on $\mathbb{C}[V]$.

i) X is normal.

ii) $X^{\text{reg}} = \{\text{free } \Gamma\text{-orbits in } V\} \rightsquigarrow \text{unramified}$

Let $\eta : V \rightarrow V/\Gamma$.

Consider $\eta : \eta^{-1}(X^{\text{reg}}) \rightarrow X^{\text{reg}}$.

Then, ω^{reg} is obtained by descent of ω from $\eta^{-1}(X^{\text{reg}})$.

iii) \rightarrow checked by Beauville.

Sometimes, V/Γ has symplectic resolutions.

a) $\dim V = 2$. $\Gamma \subseteq \text{SL}_2(\mathbb{C})$
 $\Rightarrow X = \mathbb{C}^2/\Gamma$.

Take Y to be the unique minimal resolution.

(For example, if $\Gamma = \{\pm 1\}$, $Y = T^*|P|$)

Then, Y is symplectic.

Remark: This exhausts all dimension 2 symplectic singularities.

b) $V = (\mathbb{C}^2)^{\oplus n} \curvearrowright S_n \rightsquigarrow X = V/\Gamma$

$\xrightarrow{\text{symplectic resolution}}$ \uparrow
 $Y = \text{Hilb}_n(\mathbb{C}^2)$

2) $X = \text{Spec } \mathbb{C}[\tilde{\mathbb{O}}]$.

Theorem : X is singular symplectic

- $\tilde{\mathbb{O}} = \mathbb{O}$ (cog): Panyushev, Hinich
- General case follows from here by some algebraic geometry.

When does X admit a symplectic resolution Y and what does it look like?

Answer : Y is always $T^*(G/P)$.

Here, P is a parabolic subgroup of G . That is, equivalently :

- P contains a Borel
- G/P is projective.

We have a decomposition $P = L \times U$

\uparrow ↗ unipotent

connected, reductive
(Levi subgroup)

For $G = \text{SL}_n$, we pick a composition $n = n_1 + \dots + n_k$

$$P = \left\{ \begin{pmatrix} \begin{matrix} \times & \times \\ x & x \end{matrix} & & & & & \\ & \begin{matrix} & & \times & \times \end{matrix} & & & & \\ & & \begin{matrix} & & \times \end{matrix} & & & \\ & & & \begin{matrix} & & \times \end{matrix} & & \\ & & & & \begin{matrix} & & \times \\ x & x \end{matrix} & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix} \right\} \leftrightarrow 5 = 2 + 1 + 2$$

$$L = \left\{ \begin{pmatrix} \square & 0 \\ 0 & \square \end{pmatrix} \right\} \leftarrow \text{block diagonal}$$

$$\mathcal{U} = \ker (P \rightarrow L)$$

$$\text{Let } \mathfrak{n} = \text{Lie}(\mathcal{U}).$$

$$\text{Then, } T^*(G/P) = G \times^P (g/\mathfrak{p})^*$$

$$= (G \times (g/\mathfrak{p})^*)/P$$

↑
cotangent space at eP .

$$\text{where } P \text{ acts via } \phi \cdot (g, \alpha) = (gb^{-1}, \phi \cdot \alpha)$$

$$[g, \alpha] \in G \times^P (g/\mathfrak{p})^*$$

↑

$$P\text{-orbit of } (g, \alpha)$$

Then, we have a Hamiltonian action

$$G \curvearrowright T^*(G/P).$$

Note that $\phi^\perp = \mathfrak{n}$ (w.r.t. the Killing form).

$$\Rightarrow (g/\mathfrak{p})^* = \mathfrak{n}$$

$$\text{So, } T^*(G/P) = G \times^P \mathfrak{n} \xrightarrow{\mu} g^* \cong g$$

where μ is the moment map.

$$[g, \alpha] \longmapsto \text{Ad}(g)\alpha$$

We can check that this is well-defined.

Exercise: ν is proper. (In fact, it is projective.)

Hence, $\text{Im}(\nu)$ is closed.

Let's describe $\text{Im}(\nu) = G_\eta \subseteq \mathcal{N}$ nilp. cone.

(as η consists of nilpotent elements.)

$\text{Im}(\nu)$ is irreducible because $T^*(G/P)$ is.

↑

union of finitely many orbits.

$\Rightarrow \exists$ a nilpotent orbit $\mathcal{O}_p \subset \mathcal{G}$ s.t. $\text{Im}(\nu) = \overline{\mathcal{O}_p}$

fact (to be seen later): $\dim(\mathcal{O}_p) = \dim(T^*(G/P))$

$\Rightarrow \nu$ is finite-to-one generically.

$\Rightarrow G \curvearrowright T^*(G/P)$ has an orbit $\tilde{\mathcal{O}}_p$ of dim. equal to $\dim(T^*(G/P))$.

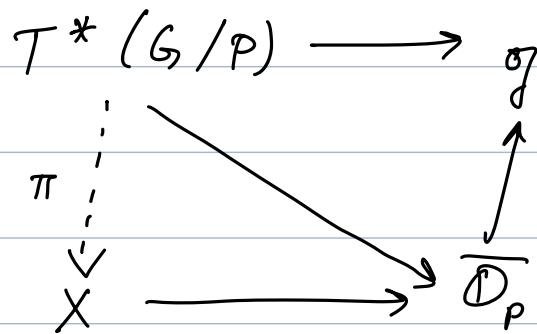
Then, $\tilde{\mathcal{O}}_p$ is open and is a cover of \mathcal{O}_p .

↓

called Richardson orbit

Let $X = \text{Spec}(\mathbb{C}[\tilde{\mathcal{O}}_p])$.

Exercise: We have a commutative diagram



s.t. π is a symplectic resolution.

Examples:

1) $P = B$ (Borel), $\mathcal{Y} = T^*(G/B)$

Then, $\text{im}(\pi) = \mathcal{N}$.

$\pi : T^*(G/B) \rightarrow \mathcal{N}$ is a symplectic resolution, called the Springer resolution.
 $(\tilde{\mathcal{O}} = \mathcal{N}, \text{ in this case})$

2) $G = \text{SL}_n$, $\mathcal{O} = \mathcal{O}_\lambda$, where λ is a partition.

Then, we can construct λ^t .

$$(\text{Eg: } \lambda = \begin{smallmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \end{smallmatrix} \Leftrightarrow \lambda^t = \begin{smallmatrix} 3 & 1 \\ 2 & 2 \\ 1 & 1 \end{smallmatrix})$$

Let $n = n_1 + \dots + n_k$ be a composition obtained from λ^t , in some order.

Then, we can construct the corresponding $P \subseteq G$.

Then, $\overline{\mathcal{O}}$ is normal. (Kraft, Procesi)

and $T^*(G/P) \rightarrow \overline{\mathcal{O}}$ is birational, and so, is a symplectic resolution.

3) $g = \text{sp}_4$ and consider the partition $(2, 2)$.
 Let P_1, P_2 be the semisimple rank 1 parabolics.
 Then, $T^*(G/P_i)$ are symplectic resolutions for
 $\text{Spec}(\mathbb{C}[\mathcal{O}]), \text{Spec}(\mathbb{C}[\tilde{\mathcal{O}}])$.
 \uparrow degree 2 cover.

Classification of filtered quantizations

Setting: A is a f.g. commutative graded
 Poisson algebra with degree of $\{ \cdot, \cdot \} = -\alpha$.
 s.t. 1) $A_0 = \mathbb{C}$ $(\alpha \in \mathbb{Z}_{>0})$.
 2) $X = \text{Spec}(A)$ is singular symplectic.

An X satisfying these two conditions is said to
 have conical symplectic singularities.

Theorem: (Lesur, 2016) Suppose A satisfies 1), 2).
 Then, \exists f.d. vector space \mathfrak{h}_X and a finite
 crystallographic reflection group $W_X \curvearrowright \mathfrak{h}_X$ s.t.
 \downarrow linear action
 $\{ \text{filtered quantizations of } A \} / \sim \xrightarrow{\text{natural}} \mathfrak{h}_X / W_X$

$W_X \rightarrow$ Namikawa Weyl group.

Example: $g \rightarrow$ s.s. Lie algebra and $X = N$.

Then, X has conical symplectic singularities.

In that case, $h_X = h^*$ and $W_X = W$.

($h \rightarrow$ Cartan subalgebra, $W \rightarrow$ Weyl group)

Construction of quantization:

$$\mathcal{U}(g) \supseteq \mathbb{Z}g \cong \mathbb{C}[h^*]^W$$

$\mathbb{Z} \hookrightarrow$ Harishchandra isomorphism

(We consider the usual action of W on $\mathbb{C}[h^*]$ here, twisting the action doesn't change the algebra.)

Let $\lambda \in h^*/W$ \rightsquigarrow maximal ideal in $\mathbb{C}[h^*]^W$

$$\rightsquigarrow \mathcal{U}_\lambda := \mathcal{U}(g) / (\mathbb{C}g \cdot m_\lambda)$$

As $m_\lambda \subseteq \mathbb{Z}$, $(\mathbb{C}g \cdot m_\lambda)$ is a 2-sided ideal.

Exercise: \mathcal{U}_λ is a filtered quantization of $\mathbb{C}[N]$.

The correspondence in the theorem is

$$\mathcal{U}_\lambda \longleftrightarrow \lambda.$$

Q: 1) How to compute h_X ?

2) How to construct a quantization starting

from a point in h_X ?

Partial answer to 1: Suppose Y is a symplectic resolution of X . Then, $h_X = H^2(Y, \mathbb{C})$.

Example: $X = \mathcal{N}$, $Y = T^*(G/B)$.

$$H^2(Y, \mathbb{C}) = H^2(G/B, \mathbb{C})$$

Let G be simply connected and $F \subset G$ be an algebraic group. Then, using the spectral sequence for the cohomology of fibre bundles,

$$H^2(G/F, \mathbb{C}) = H^1(F^0, \mathbb{C})^{F/F^0}$$

thus, $H^2(G/B, \mathbb{C}) = H^1(B, \mathbb{C}) = h^*$, which is exactly what we expected.

15/06/22

Recall: $A \rightarrow$ finitely generated commutative Poisson algebra over \mathbb{C} . $X = \text{Spec}(A)$. Suppose $A_i = 0$ if $i < 0$ and $A_0 = \mathbb{C}$ (i.e. X is conical) and X is singular symplectic.

i) X is normal

ii) X^{reg} is symplectic with form ω^{reg}

iii) for all resolution of singularities $\hat{\pi}: \hat{Y} \rightarrow X$,
 $\hat{\pi}^*(\omega_{\text{reg}})$ extends to \hat{Y} .

Theorem: $\{\text{filtered quantization}\}/\sim \xrightarrow{\sim} h_X/w_X$

How to compute h_X ?

If $Y \rightarrow X$ is a symplectic resolution, we take

$$h_X = H^2(Y, \mathbb{C}).$$

\mathbb{Q} -factorial terminalizations

In general, we replace Y with a maximal partial Poisson resolution of X , i.e.

- $\pi: Y \rightarrow X$ proper, birational, Y may be singular
- Y is a Poisson variety, π is a Poisson map i.e.
 $\# f, g \in \mathbb{C}[X], \{\pi^*(f), \pi^*(g)\} = \pi^* \{f, g\}$.
- If $\pi': Y' \rightarrow Y$ is proper, birational, Poisson, then
 π' is an isomorphism.

In particular, Y must be normal. Otherwise $\pi': Y' \rightarrow Y$, the normalization morphism, is such that \exists ! Poisson structure on Y' making π' a Poisson map. (Kaledin)

Exercise : This Y is singular symplectic.

Hint : Take a resolution $\hat{\pi} : \hat{Y} \rightarrow Y$ that is an isomorphism over Y^{reg} . Then,

$\hat{\pi} \circ \pi : \hat{Y} \rightarrow X \Rightarrow \underbrace{\pi^* \omega_{\text{reg}}}_{\text{symplectic}} \text{ extends to } Y^{\text{reg}}.$

(true, we don't use the maximality of Y .)

Remark : Using this argument, one can show that a symplectic resolution is maximal.

Existence of a maximal, partial, Poisson resolution Y is non-obvious (but true!). Also, it is known that Y has an algebro-geometric characterization : It's " \mathbb{Q} -factorial" and "terminal".

" \mathbb{Q} -factorial" : Given a scheme Z , we have its Picard group $\text{Pic}(Z) = \text{group} \{ \text{line bundles on } Z \} / \text{iso, } \otimes$

Dif" : Let Z be a normal, irreducible variety. We say Z is \mathbb{Q} -factorial if $\text{coker} [\text{Pic}(Z) \xrightarrow{\text{res}} \text{Pic}(Z^{\text{reg}})]$ is torsion.

Example : Let $\tilde{\mathcal{O}}$ be a G -equivariant cover of a nilpotent orbit \mathcal{O} in \mathfrak{g} . Let $X = \text{Spec}(\mathbb{C}[\tilde{\mathcal{O}}])$.

• As X is conical, $\text{Pic}(X) = \{0\}$

(graded Nakayama lemma)

• Next, we compute $\text{Pic}(X^{\text{reg}})$. Now, $\tilde{\mathbb{D}} \hookrightarrow X^{\text{reg}}$, with complement having codimension ≥ 2 . Thus,

$$\text{Pic}(X^{\text{reg}}) = \text{Pic}(\tilde{\mathbb{D}}).$$

Now, $\tilde{\mathbb{D}} = G/H$ with G - simply connected

$$\Rightarrow \text{Pic}(G/H) \xleftarrow{\sim} \mathcal{X}(H) = \text{Hom}(H, \mathbb{C}^\times).$$

So, X is \mathbb{Q} -factorial $\Leftrightarrow \mathcal{X}(H)$ is finite.

$H \subseteq Z_G(e) = \underbrace{Z_G(e, h, f)}_{\downarrow} \times \text{unipotent group}.$

This has been computed for G classical.

For $G = \text{SL}_n$, $\tilde{\mathbb{D}} \xrightarrow{\sim} \mathbb{D} (\subseteq \mathbb{Q})$.

X is \mathbb{Q} -factorial \Leftrightarrow All parts in the partition of \mathbb{D} are equal.

For $G = \text{Sp}_n$, SO_{2n+1} , $\tilde{\mathbb{D}} \xrightarrow{\sim} \mathbb{D} \Rightarrow X$ is \mathbb{Q} -factorial

For $G = \text{SO}_{2n}$, X is almost always \mathbb{Q} -factorial.

(The exact condition can be described in terms of the partition.)

"Terminal": Def / Prop: (Namikawa) Let Z be singular

symplectic. Then, Z is terminal if $\text{codim}_Z Z \setminus Z^{\text{reg}} \geq 4$.

Example : Let g be classical, $\mathbb{O} \subset g$ be a nilpotent orbit.
Let $X = \text{Spec}(\mathbb{O})$.

$$\text{codim}_X X \setminus X^{\text{reg}} \geq 4 \Leftrightarrow \text{codim}_{\mathbb{O}} \mathbb{O} \setminus \mathbb{O} \geq 4 \Leftrightarrow (*)$$

$(*) \Rightarrow$ The partition λ corresponding to \mathbb{O} satisfies

$$\lambda_i \leq \lambda_{i+1} + 1.$$

Theorem : (Special case of BCHM) Maximal partial resolution of X exists and is \mathbb{Q} -factorial and terminal. Also, any \mathbb{Q} -factorial and terminal partial Poisson resolution is normal.

The point is that many questions about X can be addressed by studying Y .

For example, $h_X = H^2(Y^{\text{reg}}, \mathbb{C})$.

Next, we describe Y when $X = \mathbb{C}[\tilde{\mathbb{O}}]$.

The idea is to use parabolic / Lusztig - Spaltenstein induction.

Fix $(L, \tilde{\mathcal{O}}_L)$, $L \subseteq G$ Levi, $\tilde{\mathcal{O}}_L$ is an L -equivariant cover of a nilpotent orbit in \mathfrak{l}^* . Pick parabolic P .

(L is only reductive, and not semisimple. So, we might need to replace it by its semisimple quotient)

$P = L \times U$, $P, \tilde{\mathcal{O}}_L \rightsquigarrow$ singular symplectic variety Y with a Hamiltonian G -action.

(If $\mathcal{O}_L = \{0\}$, $Y = T^*(G/P)$, $\mathfrak{h} = \text{Lie}(U)$)

$T^*G \cong G \times \mathfrak{g}^*$ using left invariant vector fields
 $G \times G \curvearrowright T^*G$ - Hamiltonian action given by:

$$(g_1, g_2) \cdot (g, \alpha) = (g, g g_2^{-1}, g, \alpha)$$

Action on the right has moment map

$$(g, \alpha) \mapsto -\alpha \quad \text{← To be corrected}$$

Action on the left has moment map

$$(g, \alpha) \mapsto g \cdot \alpha$$

$X = \text{Spec}(\mathbb{C}[\tilde{\mathcal{O}}_L]) \cap L$ is Hamiltonian with
moment map $\nu_L: X_L \longrightarrow \overline{\mathcal{O}}_L \hookrightarrow \mathfrak{l}^*$ - finite
morphism

$P \rightarrow L \curvearrowright X_L \rightsquigarrow$ Hamiltonian action of P on X_L

with moment map $\nu_L : X_L \longrightarrow \mathfrak{t}^* \oplus \mathfrak{n}^* = \mathfrak{p}^*$

Then, $T^*G \times X_L$ has a Hamiltonian \mathbb{P} -action:

$\phi \cdot (g, \alpha, x) = (g\phi^{-1}, \alpha, \phi x)$ with moment map $\nu : (g, \alpha, x) \mapsto -\alpha|_{\mathfrak{p}} + \nu_L(x)$

$$Y := \nu^{-1}(0)/\mathbb{P}$$

$$\nu^{-1}(0) = \{ (g, \alpha, x) : \alpha|_{\mathfrak{p}} = \nu_L(x) \} \quad (g, \alpha, x)$$

$$\downarrow s$$

$$\downarrow$$

$$G \times X_L \times (g/\mathfrak{p})^* \quad (g, x, \alpha - \nu_L(x))$$

$$\text{Then, } Y = \nu^{-1}(0)/\mathbb{P} = G \times^{\mathbb{P}} (X_L \times (g/\mathfrak{p})^*)$$

$$\text{Given } x \in X_L, \beta \in (g/\mathfrak{p})^* \rightsquigarrow [g, x, \beta]$$

The \mathbb{P} -orbit of
 (g, x, β) .

Y has a canonical Poisson structure and a Hamiltonian G -action.

Important exercise : $A \longrightarrow$ Poisson algebra,

$G \rightarrow$ algebraic group with $G \supset A$ rationally via
 Poisson algebra automorphisms.

Let $\phi : \mathfrak{g} \rightarrow A$ be the co-moment map that is a G -

equivariant linear map s.t. $\{\phi(\xi), \cdot\} = \xi_A$
 for all $\xi \in \mathfrak{g}$. Then, $(A/A\phi(\mathfrak{g}))^G$ is Poisson with
 bracket:

$$\{a + A\phi(g), b + A\phi(g)\} := \{a, b\} + A\phi(\mathfrak{g})$$

This is called the Hamiltonian reduction of A .

As Y is not affine, to define $\{\cdot, \cdot\}$ on \mathcal{O}_Y , we need
 to sheafify.

Let $\omega: G \rightarrow G/P$, $\eta: Y = G \times^P (X_L \times (\mathfrak{g}/\mathfrak{p})^*) \rightarrow G/P$
 be projections, which are both affine morphisms.

Let $U \subseteq G/P$ be affine \rightsquigarrow Can consider $\mathbb{C}[\eta^{-1}(U)]$.

Exercise: We can identify $\mathbb{C}[\eta^{-1}(U)]$ with the Hamiltonian reduction of $\mathbb{C}[\omega^{-1}(U) \times \mathfrak{g}^* \times X_L]$ under the P -action.

Hence, we get a bracket $\{\cdot, \cdot\}$ on \mathcal{O}_Y .

Also, $G \curvearrowright Y$ whose moment map ν' we compute:

Now, $G \times P \curvearrowright T^*G \times X_L$

$\rightsquigarrow G \times P \curvearrowright \nu^{-1}(0)$

$\rightsquigarrow G \curvearrowright Y = \nu^{-1}(0)/P$

Thus, moment map $G \curvearrowright Y: [q', x, \beta] \mapsto q'(\nu_L(x) + \beta)$

Exercise : • ν' is proper .

• ν' is indeed a moment map .

• $\text{Im}(\nu')$ is the closure of a single orbit .

Now, recall that one goal was to construct a \mathbb{Q} -factorial terminalization .

Theorem : There is a bijection between :

- 1) $\tilde{\mathcal{O}}$ G -equivariant covers of nilpotent orbits in \mathfrak{g}^*
- 2) $(L, \tilde{\mathcal{O}}_L)$ L is Levi, $\tilde{\mathcal{O}}_L$ is an L -equivariant cover of a nilpotent orbit l^* s.t. $X_L = \text{Spec}(\mathbb{C}[\tilde{\mathcal{O}}_L])$ is a \mathbb{Q} -factorial terminalization .

The bijection $2 \Rightarrow 1$ is constructed as follows :

Choose P parabolic $\rightsquigarrow Y = G \times^P (X_L \times (\mathfrak{g}/\mathfrak{p})^*)$ has a unique open orbit $\tilde{\mathcal{O}}$ (depending on L , \mathcal{O}_L , not on P). Then, Y is a \mathbb{Q} -factorial terminalization of $X = \text{Spec} \mathbb{C}[\tilde{\mathcal{O}}]$.

Remark : $(L, \tilde{\mathcal{O}}_L)$ is considered upto G -conjugacy .

I) X_L is \mathbb{Q} -factorial and terminal \Rightarrow So is Y .

II) $h_X = H^2(Y^{\text{reg}}, \mathbb{C}) \xleftarrow{\sim} (l/[l, l])^* = H^2(G/P, \mathbb{C})$

l^* is an isomorphism because $H^i(X_L^{\text{reg}}, \mathbb{C}) = 0$
for $i = 1, 2$.

For $i = 1$, this is automatic.

For $i = 2$, X_L is \mathbb{Q} -factorial, $H^0(X_L^{\text{reg}}, \mathbb{C}) = H^2(\tilde{O}_L, \mathbb{C})$

III) The claim that G has an open orbit in Y is classical: It follows from

$$\dim Y = \dim \nu^{-1}(y) \quad (\text{To be explained})$$

IV) To show that $2 \Rightarrow 1$ is a bijection (i.e., to recover (L, \tilde{O}_L) from X), we use deformations.

$\mathbb{C}[\tilde{O}]$ admits a Poisson deformation over h_X s.t. each fiber has a Hamiltonian action of G . We take the generic fiber, we look at the moment map image, which is the closure of a single orbit.

L = centralizer of semisimple part, $O_L = L$ -orbit of nilpotent part.

Lemma: $\dim(Y) = \dim(\nu^{-1}(y))$.

Proof: Deform! $z = (L/[e, e])^* \subset \mathfrak{p}^*$
 $\rightsquigarrow Y_z = \nu^{-1}(z)/P$

$y = G \times^P (X_L \times (\mathfrak{g}/\mathfrak{p})^*)$, $y_z = G \times^P (X_L \times (\mathfrak{g}/\mathfrak{p})^* \times z)$

\downarrow \leftarrow equidimensional
fibers

Pick $z \in \mathcal{Z}$ generic $\Leftrightarrow G_z = 1$.

Facts : • We have an isomorphism

$$Y_z = G \times^P (X_L \times (G/\mathfrak{p})^* \times \{z\}) \xrightarrow{\sim} G \times^L (X_L \times \{z\}).$$

• $\nu' : Y_z \longrightarrow G^* \quad (g, x) \mapsto g(z + \nu_L(x))$

is finite, and so, the image is the closure of a single orbit.

So, $\dim(Y) = \dim(Y_z) = \dim(\nu'(Y_z))$

Hence, it remains to show that \dim of $\nu'(Y)$
 $= \dim$ of $\nu'(Y_z)$.

$$Y_{\mathbb{C}z} = \nu^{-1}(\mathbb{C}z)/P \longrightarrow \mathbb{C}z$$

$$\downarrow \nu'$$

$$G^*$$

$$\downarrow \pi_G$$

$$G^* // G \quad (= \text{Spec}(\mathbb{C}[G^*]^G))$$

Then, $\text{im}(\pi_G \circ \nu') = \pi_G(\nu'(Y_{\mathbb{C}z}))$, but

$$\nu'(Y_{\mathbb{C}z}) \xrightarrow{\pi_G} \text{single point for any } r \in \mathbb{C}.$$

Thus, $\nu'(Y_{\mathbb{C}z})$ is the closure of a single orbit.

$\pi_G(z) \neq 0 \Rightarrow \pi_G(\nu'(Y_{\mathbb{C}z}))$ is a curve.

Now, $\text{im}(\nu') = \text{preimage of } 0 \text{ under}$

$\nu'(Y_{CZ})$ $\xrightarrow{\pi_G}$ curve $\pi_G(\nu'(Y_{CZ}))$.
irreducible

$$\Rightarrow \dim(\text{Im } \nu') = \dim(\nu'(Y_{CZ})) - 1 = \dim Y.$$

Corrections:

1) $T^* G \cong G \times \mathfrak{g}^*$ via left invariant vector fields.

$$(g_1, g_2) \cdot (g, \alpha) = (g_1 g g_2^{-1}, g_2 \alpha).$$

2) $T^*(G/P)$ is not the only possible symplectic resolution for $\text{Spec}(\mathbb{C}[\tilde{\mathbb{O}}])$.

For example, $\mathbb{C}^{2n} = \text{Spec}(\mathbb{C}[\tilde{\mathbb{O}}])$ for

$$\tilde{\mathbb{O}} = \mathbb{C}^{2n} \setminus \{0\} \xrightarrow{\simeq} \mathbb{O}$$

(Almost)

rank one orbit in \mathbb{O}

All possible symplectic resolutions are of the form

$$G \times^P ((\mathfrak{g}/\mathfrak{p})^* \times \mathbb{C}^{2n})$$

Now, let X be conical, singular symplectic.

$\rightsquigarrow h_x, w_x$

||

$$H^2(Y \cap \mathbb{C})$$

where $Y \rightarrow X$ is a \mathbb{Q} -factorial terminalization.

How to recover h_x, w_x from X itself?

Example: $\Gamma \subseteq \text{SL}_2(\mathbb{C})$ be a finite subgroup

$$\rightsquigarrow X = \mathbb{C}^2/\Gamma$$

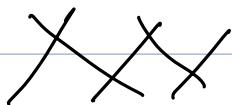
Upto SL_2 -conjugacy, Γ 's are classified by type ADE Dynkin diagrams.

$$A_l \rightsquigarrow \Gamma = \left\{ \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix} : \varepsilon^{l+1} = 1 \right\}$$

Minimal resolution of \mathbb{C}^2/Γ

$$\begin{array}{ccc} \text{Isomorphism} & \xleftarrow{\pi} & \\ \text{away from zero} & \mathbb{C}^2/\Gamma & \end{array}$$

Then, $\pi^{-1}(\{0\}) = \cup P'$'s, whose intersection is either \emptyset or is transversal at a single point.



\rightsquigarrow Can construct a graph whose vertices are the P' 's and we have an edge between a pair of vertices if the corresponding P' 's intersect.

Then, this graph gives us the corresponding Dynkin diagram.

$\gamma = \widetilde{\mathbb{C}^2/\Gamma}$ is homotopy equivalent to $\pi^{-1}(0)$.

Now, $H^2(\pi^{-1}(0), \mathbb{C})$ = vector space with basis indexed

\downarrow^S by components

h_p = Cartan space of the Dynkin diagram

Basis element corresponding to $P' \rightarrow$ simple roots

$W_P \rightarrow$ Weyl group of the ADE Dynkin diagram

Then,

$$h_x = h_P \text{ and } W_x = W_P.$$

In general, $h_x = \bigoplus_{i=0}^k h_i \cap W_x = \prod_{i=1}^k W_i$

$h_i = H^2(X^{reg}, \mathbb{C})$, (h_i, W_i) are codimension 2
symplectic leaves

Defⁿ: $X \rightarrow$ Poisson variety. An algebraic symplectic
leaf in X is a locally closed subvariety $L \subseteq X$ s.t.

- L is irreducible, smooth.
- L is a Poisson subvariety, i.e., if open affine
 $U \subseteq X$, the ideal of zeroes of $L \cap U \subseteq U$ is
stable under $\{ \cdot, \cdot \} \subseteq \mathbb{C}[U], \cdot \}$ ($\Rightarrow \{ \cdot, \cdot \}$ on \mathcal{O}_L)
- $\{ \cdot, \cdot \}$ on L is symplectic.

Example: If G is a connected algebraic group, then,
the symplectic leaves in $g^* = G$ -orbits.

Theorem: (Kaledin) If X is singular symplectic, then,
 $X = \bigcup$ finitely many symplectic leaves.

Let L_1, \dots, L_k be codimension 2 symplectic leaves of
 X .

Goal: $L_i \rightsquigarrow h_i, w_i$

Step 1: Use L_i to construct a Kleinian singularity Γ_i .
 To get Γ_i , consider (formal) transverse slice Σ_i to L_i in X . Then, Σ_i is a codim. 2 symplectic singularity.
 Then, Σ_i is a formal neighbourhood of 0 in \mathbb{C}^2/Γ_i for a unique Γ_i .

$\Gamma_i \rightsquigarrow (h_{\Gamma_i}, w_{\Gamma_i})$.

It turns out that $\pi_i(L_i) \curvearrowright h_{\Gamma_i}, w_{\Gamma_i}$.

Then, $h_i := h_{\Gamma_i}^{\pi_i(L_i)}$, $w_i := w_{\Gamma_i}^{\pi_i(L_i)}$

Construction of the $\pi_i(L_i)$ -action: (monodromy)

\mathbb{Q} -factorial terminalization

$$\begin{array}{ccc} Y & \xrightarrow{\pi_Y} & X \\ \downarrow & & \downarrow \\ Y \times_X \Sigma_i & \xrightarrow{\quad} & \Sigma_i \end{array}$$

symplectic resolution because Y is terminal

$\Rightarrow Y \times_X \Sigma_i$ is (completion at $\pi^{-1}(0)$) of \mathbb{C}^2/Γ_i . So,

$\forall y \in L_i$, $\pi_Y^{-1}(y) \cong \pi^{-1}(0) \leftarrow \mathbb{C}^2/\Gamma_i \leftarrow \widetilde{\mathbb{C}^2/\Gamma_i} : \pi$

Varying $y \rightsquigarrow \pi_i(L_i, y) \curvearrowright$ components on $\pi_Y^{-1}(y)$.

\rightsquigarrow Action of $\pi_i(L_i)$ on $h_{\Gamma_i}, w_{\Gamma_i}$ by diagram automorphisms.

Then, we can define

$$h_i = h_{\Gamma_i}^{\pi_i(L_i)}, \quad w_i = w_{\Gamma_i}^{\pi_i(L_i)}.$$

Example : (Reference : Slodowy's book)

\mathfrak{g} \rightarrow simple Lie algebra, $\mathcal{N} \subseteq \mathfrak{g}$
Leaves in \mathcal{N} = orbits.

Fact : \exists codim 2 leaves, a.k.a., semiregular orbit.

For sl_n , we have $(n-1, 1)$ (reg. = (n))

" so_{2n+1} , " " $(2n-1, 1^2)$ (reg. = $(2n+1)$)

" sp_{2n} , " " $(2n-2, 2)$ (reg. = $(2n)$)

" so_{2n} , " " $(2n-3, 3)$ (reg. = $(2n-1, 1)$)

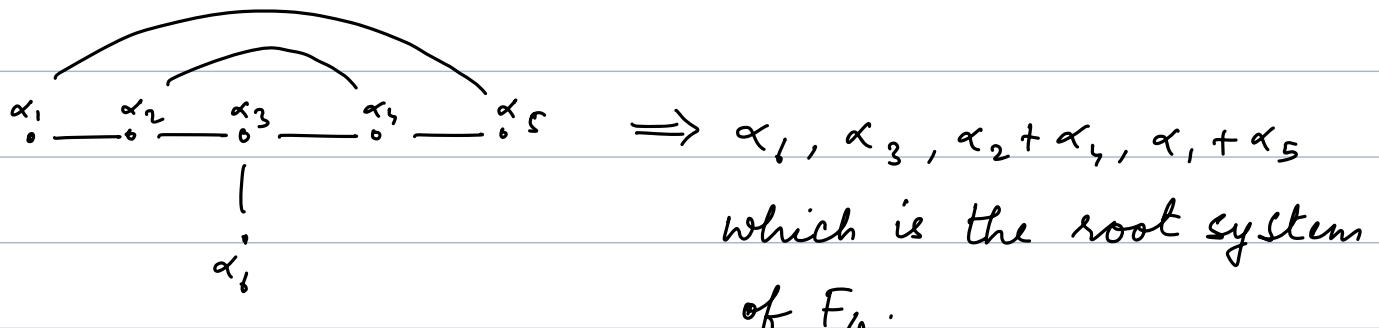
$H^2(X_{\mathbb{D}^{\text{reg}}}, \mathbb{C}) = \{0\}$. Hence, $h_x = h_\perp$, $w_x = w_\perp$.

\mathbb{D}^{reg}

If \mathfrak{g} is of ADE type, then Γ is of the same type and the monodromy action is trivial.

\mathfrak{g}	Σ_\perp	$\pi_i(\mathbb{D}_{\text{subreg.}})$
B_n	A_{2n+1}	$\mathbb{Z}/2\mathbb{Z}$
C_n	D_{n-1}	$\mathbb{Z}/2\mathbb{Z}$
F_4	E_6	$\mathbb{Z}/2\mathbb{Z}$
G_2	D_4	S_3

Then, $\pi_i(\mathbb{D}_i)$ acts on the simply laced Dynkin diagram by folding. For example, for E_6 ,



$$H^2(\cdot, \mathbb{C}) \rightsquigarrow \text{Pic}(\cdot) \otimes_{\mathbb{Z}} \mathbb{C}$$

$\text{Pic}(Y^{\text{reg}}) = [Y^{\text{reg}} = X^{\text{reg}} \amalg \mathbb{Z}$ divisors in the pre-image
of co-dim 2 leaves \amalg rest]

The "rest" has $\text{codim} > 1$, and so, doesn't affect the Picard group.

$$\Rightarrow \text{Pic}(Y^{ng}) \otimes_{\mathbb{Z}} \mathbb{C} = \text{Pic}(X^{ng}) \otimes_{\mathbb{Z}} \mathbb{C} \leftarrow h_0$$

$$H^2(Y^{reg}, \mathbb{C}) \cong \bigoplus_{i=1}^k h_i$$

16/06/22

Recap: $G \rightarrow \text{semisimple}$ $\tilde{\mathcal{O}} \rightarrow G\text{-equivariant cover}$
 of a nilpotent orbit in \mathfrak{g}^* .

thus $A = \mathbb{C}[\tilde{\mathbb{O}}]$ is graded Poisson.

then $X = \text{Spec}(A)$ is conical singular symplectic

Goal : Construct filtered quantizations of A .

Up to isomorphism, they are parametrized by h_x/w_x .

For this, we construct $Y \rightarrow X$, a \mathbb{Q} -factorial terminalization and take $h_x = H^2(Y^{\text{reg}}, \mathbb{C})$. L -equivariant

Construction of Y : Take Levi $L \subseteq G$, nilpotent cover $\tilde{\mathbb{O}}_L$ and $X_L = \text{Spec}(\mathbb{C}(\tilde{\mathbb{O}}_L))$ is \mathbb{Q} -factorial terminal.

Choose parabolic P with Levi L

then $Y = G \times^P (X_L \times (\mathcal{O}_Y/\mathfrak{p})^*)$ as Hamiltonian reduction.

$$P \curvearrowright T^*G \times X_L = G \times \mathcal{O}_Y^* \times X_L \quad \beta \cdot (g, \alpha, x) = (gb^{-1}, \beta\alpha, \beta x)$$

$$\nu: G \times \mathcal{O}_Y^* \times X_L \longrightarrow \mathfrak{p}^* \quad (g, \alpha, x) \longmapsto -\alpha\beta + \nu_L(x)$$

$$y = \nu^{-1}(0)/P \rightsquigarrow \{\cdot, \cdot\} \text{ on } \mathcal{O}_Y.$$

Finally, take $h_x = H^2(Y^{\text{reg}}, \mathbb{C}) \xleftarrow{\sim} (L/[L, L])^*$

Then, $\tilde{\mathbb{O}}$ is the open G -orbit in Y (this only depends on L , $\tilde{\mathbb{O}}_L$, and not P) $\Rightarrow Y \rightarrow X$ is a \mathbb{Q} -factorial terminalization.

$$\mathbb{C}^* \curvearrowright X_L, \text{deg}(\{\cdot, \cdot\}) = -d$$

$$\Rightarrow \mathbb{C}^* \curvearrowright Y \quad z \cdot (g, \alpha, x) = (g, z^{-d}\alpha, z \cdot x)$$

rescales $\{\cdot, \cdot\}$ on \mathcal{O}_Y by $z \rightarrow z^{-d}$.

Quantization of Y

$$\eta: Y = G \times^P (X_L, (\mathcal{O}_Y/\mathfrak{p})^*) \longrightarrow G/P$$

is \mathbb{C}^* -invariant and affine.

$\rightsquigarrow \eta_* \mathcal{O}_Y$ a sheaf of graded Poisson algebras on G/P .

Defⁿ : A filtered quantization of Y is a quasi-coherent sheaf \mathcal{D} on G/P of \mathbb{C} -algebras with algebra filtration given by sheaves of $\mathcal{O}_{G/P}$ -modules $\mathcal{D} = \bigcup_{i \geq 0} \mathcal{D}_i$ s.t. $[\mathcal{D}_{\leq i}, \mathcal{D}_{\leq j}] \subseteq \mathcal{D}_{i+j-d}$ ($\rightsquigarrow \text{gr } \mathcal{D}$ is a sheaf of graded Poisson algebras) and $\text{gr } \mathcal{D} \xrightarrow{\sim} \eta_* \mathcal{O}_Y$ of sheaves of graded Poisson algebras.

Example : $Y = T^*(G/P)$, $\mathcal{D} := \mathcal{D}_{G/P}$ - sheaf of linear algebraic differential operators on G/P filtered by order of differential operator is a filtered quantization of $T^*(G/P)$. ($d = 1$).

Temporary goal : for $\lambda \in (L/[L, L])^*$, produce a filtered quantization \mathcal{D}_λ of Y (by quantizing the construction of Y).

Quantum analog of $T^*G \times X_L$:

Recall that $H^2(X_L^{\text{reg}}, \mathbb{C}) = \{0\}$

\Rightarrow ?! filtered quantization A_L of $\mathbb{C}[X_L]$.

$\mathcal{D}(G)$ (the algebra of differential operators on G)

is a filtered quantization of $\mathbb{C}[T^*G]$.

$\rightsquigarrow \mathcal{D}(G) \otimes \mathcal{A}_L$ is a filtered quantization of $T^*G \times X_L$.

Classical comoment map $\phi : \mathfrak{g} \rightarrow \mathbb{C}[T^*G \times X_L]$.

Then, $\phi(\xi) = \underbrace{\xi_A \otimes 1}_{\text{left-invariant}} + 1 \otimes \phi_L(\xi) \leftarrow \text{degree } d$.

Def: $\mathcal{A} \rightarrow$ associative algebra, $R \rightarrow$ algebraic group acting rationally on R by algebra automorphisms. A quantum co-moment map is an R -equivariant linear map $\phi : \mathfrak{g} (= \text{Lie}(R)) \rightarrow \mathcal{A}$ s.t.

$$[\phi(\xi), \cdot] = \xi_A \quad \forall \xi \in \mathfrak{g}.$$

Example: $G \curvearrowright G$ by eight translations $\rightsquigarrow G \curvearrowright \mathcal{D}(G)$

Then, $\phi : \xi \mapsto -\xi_A$ (for left translations $\xi \mapsto \xi_L$) is the quantum comoment map.

Exercise: $\phi_L : \mathfrak{l} \longrightarrow \mathbb{C}[X_L]_d$ comoment map

(works for all $\tilde{\mathcal{O}}_L$). Then, \exists Lie algebra homo.

$$\Phi_L : \mathfrak{l} \longrightarrow (\mathcal{A}_L)_{\leq d} \quad \text{s.t. } \phi_L = \Phi_L + (\mathcal{A}_L)_{\leq d-1}$$

Such a Φ_L is unique if $\Phi_L|_{\mathfrak{z}(\mathfrak{l})} = 0$.

Finally, $\mathfrak{l} \curvearrowright \mathcal{A}_L$ by filtered algebra automorphisms s.t. Φ_L is the quantum comoment map.

We can view Φ_L as $\phi \mapsto l \mapsto (A_L)_{\leq d}$.

Pick $\lambda \in (l/[l, l])^*$ and $\rho_{G/P} = \frac{1}{2} \left(\begin{array}{l} \text{char of action of } l \\ \text{on } \Lambda^{\text{top}}(G/P) \end{array} \right)$

Define $\tilde{\Phi}_\lambda(\xi) = -\xi_L \otimes \lambda + \lambda \otimes \Phi_L(\xi) - \langle \lambda + \rho_{G/P}, \xi \rangle$

which is a map $\phi \mapsto (\mathcal{D}(G) \otimes A_L)_{\leq d}$.

The top degree part of $\tilde{\Phi}_\lambda$ is ϕ .

Exercise: Keeping the notation A, R, Φ . The space $(A/A\Phi(r))^R$ is an associative algebra w.r.t. $(a + A\Phi(r)) \cdot (b + A\Phi(r)) := ab + A\phi(r)$.

This is called the quantum Hamiltonian reduction.

Remark: If A is filtered with degree $[\cdot, \cdot] \leq -d$, $\text{Im}(\Phi) \subseteq A_{\leq d}$, then $[A/A\Phi(r)]^R$ inherits a filtration with degree $[\cdot, \cdot] \leq -d$.

We view $\mathcal{D}(G) \otimes A_L$ as a quasi-coherent sheaf on G/P via $\omega: G \rightarrow G/P$.

now $\mathcal{D}_\lambda := \left[(\mathcal{D}(G) \otimes A_L) / (\mathcal{D}(G) \otimes A_L) \phi_\lambda(\phi) \right]^P$
 - sheaf of filtered algebras on G/P .

Fact: \mathcal{D}_λ is a filtered quantization of $\eta_* \mathcal{O}_Y$.
 (Thanks to $P \cap \pi^{-1}(0)$ is free.)

Example : $x = \mathcal{N}$, $y = T^*(G/B)$

$P_{G/B} = P = \frac{1}{2} \sum \text{positive roots}$

- $\mathcal{D}_\lambda = \mathcal{D}_{G/B}^{1-\rho}$ $(1-\rho)$ -twisted differential operators
- Directly generalizes to $Y = T^*(G/P)$.

Remark : $\lambda \mapsto \mathcal{D}_\lambda$ gives a bijection

$(\mathbb{C}/[\mathbb{C}, \mathbb{C}])^* \xrightarrow{\sim} \{\text{filtered quantizations of } Y\}/\text{iso}$

$\mathbb{H}^2(Y^{\text{reg}}, \mathbb{C}) \xleftarrow[\text{Period map}]{\sim} (\text{Bezrukavnikov - Kaledin})$

Then, Period $(\mathcal{D}_\lambda) = \lambda$.

Quantizations of $A = \mathbb{C}[x]$

Observe that $Y \xrightarrow[\text{proper, birational}]{\pi} X \xrightarrow[\text{normal}]{\text{normal}}$

$\Rightarrow \mathbb{C}[x] \xrightarrow[\sim]{\pi^*} \mathbb{C}[y]$

Proposition : $\mathcal{A}_\lambda := \Gamma(\mathcal{D}_\lambda)$ is a quantization of $\mathbb{C}[x]$.

Sketch of proof : Need to check that

$gr(\mathcal{A}_\lambda) = gr(\Gamma(\mathcal{D}_\lambda)) \xrightarrow{\sim} \mathbb{C}[x]$

\downarrow " $\Gamma(gr(\mathcal{D}_\lambda)) \quad \Gamma(\mathcal{D}_\lambda)$

$$\Gamma(\mathrm{ge}(\mathcal{D}_x))$$

Fact: $H^i(G/P, \eta_* \mathcal{O}_Y) = H^i(Y, \mathcal{O}_Y) = 0 \quad \forall i > 0$

This follows from X having rational singularities.
(Beaville).

Hence, to show that $\mathrm{ge}(\Gamma(\mathcal{D}_x)) = \Gamma(\mathrm{ge}(\mathcal{D}_x))$,

we'll use that $H^i(G/P, \eta_* \mathcal{O}_Y) = 0$

$$\bigoplus_{i \geq 0} (\eta_* \mathcal{O}_Y)_i$$

$$\mathrm{ge} \mathcal{D}_x \simeq \eta_* \mathcal{O}_Y \iff \text{We have a SES } \forall i$$

$$0 \rightarrow (\mathcal{D}_x)_{\leq i-1} \rightarrow (\mathcal{D}_x)_{\leq i} \rightarrow (\eta_* \mathcal{O}_Y) \rightarrow 0$$

↑

thus $H^1 = 0$

$$\Rightarrow H^i((\mathcal{D}_x)_{\leq i-1}) = 0 \quad \forall i$$

⇒ We have a SES

$$0 \rightarrow \Gamma((\mathcal{D}_x)_{\leq i-1}) \rightarrow \Gamma((\mathcal{D}_x)_{\leq i}) \rightarrow \Gamma(\eta_* \mathcal{O}_Y) \rightarrow 0$$

$$\Leftrightarrow \mathrm{ge}(\Gamma(\mathcal{D}_x)) = \Gamma(\mathrm{ge}(\mathcal{D}_x))$$

example: $X = \mathcal{N}$, $P = T^*(G/B)$, $\mathcal{D}_x = \mathcal{D}_{G/B}^{1-p}$.

Then, $\Gamma(\mathcal{D}_{G/B}^{1-p}) = \mathcal{U}_x$ ($= \mathcal{U}_G / \mathcal{U}_G m_x$), which is
(By B.B. localization) a quantization of $\mathbb{C}[x]$

Fact : $1 \mapsto A_1$ gives the bijection

$$h_x/w_x \xrightarrow{\sim} \{\text{quantizations of } \mathbb{C}[\mathbb{X}]^G\}/\text{iso.},$$

which is exactly the classification theorem we stated earlier.

Remarks : 1) When do we have $A_1 \cong A_{1'}$ as filtered algebras with G -action?

$N_G(L) \subseteq G$, $N_G(L) \curvearrowright \{L\text{-equivariant nilpotent covers}\}$
By twisting L -action (& moment map to \mathfrak{l}^*).

$\rightsquigarrow N_G(L, \tilde{\mathcal{O}}_L) \subset N_G(L)$ - stabilizer of $\tilde{\mathcal{O}}_L$.

$$L^\triangleright \rightsquigarrow N_G(L, \tilde{\mathcal{O}}_L)/L \curvearrowright (L/[L, L])^*$$

Claim : $A_1 \xrightarrow{\sim} A_{1'}$ as filtered algebras with G -action

↑

\mathfrak{t} and $\mathfrak{t}' \in$ same $\underbrace{N_G(L, \tilde{\mathcal{O}}_L)/L}$ -orbit
finite group

Hint : Both $\mathcal{Y}_1, \mathcal{D}_1$ depend on choice of P .

$\rightsquigarrow \mathcal{Y}_1^P, \mathcal{D}_1^P$. Turns out that A_1 doesn't depend on P , as a filtered quantization.

$n \in N_G(L, \tilde{\mathcal{O}}_L) \rightsquigarrow nPn^{-1}$ another Parabolic with Levi L .

$$\mathcal{Y}^{nPn^{-1}} \xleftarrow[n]{\sim} \mathcal{Y}, \quad \mathcal{D}_{n1}^{nPn^{-1}} \xleftarrow[n]{\sim} \mathcal{D}_1^P$$

$$\Rightarrow A_1 = \Gamma(\mathcal{D}_1^P) \xrightarrow{\sim} \Gamma(\mathcal{D}_{n1}^{nPn^{-1}}) = A_{n1}.$$

In the opposite direction, let $\psi: A_1 \xrightarrow{\sim} A_{1'}$ be a filtered algebra isomorphism that is G -equivariant.

$\rightsquigarrow \text{gr } \psi \in \text{Aut}_G(\mathbb{C}[x])$ - automorphisms of graded Poisson algebras, G -equiv

\rightsquigarrow group homomorphism

$$N_G(L, \tilde{\mathcal{O}}_L)/L \longrightarrow \text{Aut}_G(\mathbb{C}[x]).$$

Fact: (Losev, Namikawa) There is a short exact sequence:

$$L \longrightarrow W_x \longrightarrow N_G(L, \tilde{\mathcal{O}}_L)/L \longrightarrow \text{Aut}_G(\mathbb{C}[x]) \longrightarrow 1$$

\Downarrow

$$n \longmapsto \text{gr}[\psi: A_1 \xrightarrow{\sim} A_{n\lambda}].$$

Using this construction and classical analog, we get an algebraic orbit method. (conjectured by Vogan.)

Theorem: (LMBM'21) $G \rightarrow$ simply connected. Then, \exists a bijection between:

1) filtered quantizations of $\mathbb{C}[\tilde{\mathcal{O}}]$ & nilpotent covers $\tilde{\mathcal{O}}$ upto filtered algebra isomorphisms.

(NOT upto filtered quantization isomorphisms.)

2) All G -equivariant covers of all (co)-adjoint orbits.

In the above bijection,

Nilp $\tilde{\mathcal{O}}$ in 2) \mapsto its quantization A_0 .

(the canonical quantization)

Can the algebras A_1 be described explicitly?

$G \curvearrowright A_1$ with quantum co-moment map

$\Phi : \mathcal{U}_G \longrightarrow A_1$. (See earlier exercise)

Theorem: (LMBM'21, MBM'21)

$1 = 0 \Rightarrow \text{ker } \Phi_G$ is maximal ideal.

(We can recover \ker explicitly $\neq \tilde{\Phi}$).

Also, if $\tilde{\Phi} \subseteq \mathfrak{o}_g^*$, then $\Phi_G : \mathcal{U}_G \longrightarrow A_0$.

Harishchandra bimodules

Defⁿ: (Harishchandra) An HC \mathcal{U}_G -bimodule \mathcal{B} is a f.g. \mathcal{U}_G -bimodule s.t. the adjoint \mathfrak{o}_g -action is locally finite, i.e., $\forall b \in \mathcal{B}$, \exists a f.d. $\text{ad}(\mathfrak{o}_g)$ -stable $\mathcal{B}_0 \subset \mathcal{B}$ and $b \in \mathcal{B}_0$.

(Here, $\text{ad}(\xi)b = \xi \cdot b - b \cdot \xi$ for $\xi \in \mathfrak{o}_g, b \in \mathcal{B}$)

Example: 1) $\mathcal{B} = \mathcal{U}_G$, called the regular bimodule, is an HC-bimodule. This follows by observing that

$$\mathcal{U}_G = \bigcup_{i \geq 0} (\mathcal{U}_G)_{\leq i} \quad (\text{PBW filtration})$$

\uparrow f.d., $\text{ad}(\mathfrak{o}_g)$ -stable

2) All sub-quotients of HC bimodules are HC.

Exercise: \forall f.d. \mathfrak{o}_g -rep., $V \otimes \mathcal{U}_G$ is an HC-bimod.

$$\text{with, } (v \otimes a) \xi = v \otimes a \xi \quad v \in V, a \in \mathcal{U}_\mathcal{G}$$

$$\xi (v \otimes a) = \xi v \otimes a + v \otimes \xi a \quad \xi \in \eta.$$

a) This bimodule is HC.

b) Every HC bimodule is a quotient of $V \otimes \mathcal{U}_\mathcal{G}$ for some V .

$G \rightarrow$ simply connected

An irreducible unitary G -representation

\rightsquigarrow HC - bimodule, (Take the subspace of "algebraic" vectors)

which is irreducible and "unitarizable", that is, the original unitary structure restricts to a positive definite one on the bimodule.

Theorem: (Harishchandra) This defines a bijection between:

- 1) Unitary G -irreps.
- 2) Irreducible unitarizable HC - bimodules.

Experimental evidence: Unitarizable irred. HC - bimodules have "large intersection" with HC - bimodules over quantizations of $\mathbb{C}[\tilde{\mathcal{O}}]$.

Barbasch - Vogan construction and glimpses of symplectic duality

$\Phi_G : \mathcal{U}_G \rightarrow \mathcal{A}_0 \rightarrow$ canonical quantization of
 $\ker \Phi_G \rightarrow$ maximal ideal $\mathbb{C}[\tilde{\mathcal{O}}].$

Unipotent representations of real semisimple groups

↑ ~ orbit method

Nilpotent orbits (and their covers)

1985 : Barbasch, Vogan defined special unipotent representations.

$I \subseteq \mathcal{U}_G$ 2-sided ideal $\rightsquigarrow I \cap \mathbb{Z} = \mathbb{Z}_G$ (=center)
max. ideal w.r.t. \subseteq $\downarrow \varsigma$
 $\mathbb{C}[h^*]^W$

So, $I \rightsquigarrow h^*/W.$

Fact : This defines a bijection

$\{ \text{max. ideals of } \mathcal{U}_G \} \xrightarrow{\sim} h^*/W$

Notation : For $\lambda \in h^*/W$, $I_{\max}(\lambda)$ = corresponding maximal ideal

Example : $I_{\max}(p) = \mathcal{U}_G \cdot \mathcal{U}_G$, $I_{\max}(o) = \mathcal{U}_G \cdot m_0$

BV : Collection of max. ideals (\leftrightarrow subsets in h^*/W).

Let \mathcal{O}^{\vee} be Langlands dual. ($\mathcal{O} = \mathrm{SO}_{2n+1} \leftrightarrow \mathcal{O}^{\vee} = \mathrm{Sp}_{2n}$)

Let $\mathcal{O}^{\vee} \subseteq \mathcal{O}^{\vee}$ be a nilpotent orbit $\rightsquigarrow (e^{\vee}, h^{\vee}, f^{\vee})$.

Can conjugate h to be inside $\mathfrak{h}^v = h^*$.

Dfn: (BV '85) $I_{\mathbb{O}^v} = I_{\max} \left(\frac{1}{2} h^v \right)$
 (special unipotent ideal).

Theorem: (LMBM '21). If \mathbb{O}^v , \mathfrak{g} an $\text{Ad}(g)$ -equivariant cover of nilpotent orbit $\tilde{d}(\mathbb{O}^v)$ s.t. $I_{\mathbb{O}^v} = \ker(\Phi_g : \mathcal{U}_{\mathfrak{g}})$ is a canonical quantization of $\mathbb{C}[\tilde{d}(\mathbb{O}^v)]$.

• $\mathbb{O}^v \hookrightarrow \tilde{d}(\mathbb{O}^v)$ gives an embedding
 $\{\text{nilpotent orbits in } \mathfrak{g}^v\} \hookrightarrow \{\text{nilpotent covers for } \mathfrak{g}\}$

Barbasch - Vogan duality : $I \subseteq \mathcal{U}_{\mathfrak{g}}$ 2-sided ideal.

$\rightsquigarrow \text{gr } I \subseteq S_{\mathfrak{g}} = \mathbb{C}[\mathfrak{g}^*]$ for the PBW filtration
 \downarrow
 homogeneous G -stable ideal

$\rightsquigarrow \text{gr } I \subseteq \mathfrak{g}^*$
 \parallel

$V(I) \rightarrow$ associated variety

If I is maximal, $V(I)$ is the closure of a single nilpotent orbit.

Eg : If $I = \ker [\Phi_g : \mathcal{U}_{\mathfrak{g}} \rightarrow \mathcal{A}]$,
 \hookrightarrow quantization of $\mathbb{C}[\tilde{\mathbb{O}}]$

then $V(I) = \tilde{\mathbb{O}}$, where $\tilde{\mathbb{O}}$ is a cover of $\bar{\mathbb{O}}$.

Dfn: (BV '85) BV dual $d(\mathbb{O}^v)$ of $\mathbb{O}^v \subseteq \mathfrak{g}^v$ is then an

orbit in $V(I_{\mathcal{O}^v})$.

$\rightsquigarrow d : \{ \text{nilpotent orbits in } \mathfrak{o}^v \}$

$\rightarrow \{ \text{nilpotent orbits in } \mathfrak{g}^v \}$

$\text{im } d = \text{"special" nilpotent orbits.}$

Examples :

• $\mathcal{O}^v = \{0\} \Rightarrow h^v = 0 \Rightarrow I_{\mathcal{O}^v} = I_{\max}(0) \Rightarrow V(I_{\max}(0))$
 $\Rightarrow d(\mathcal{O}^v) = \text{principal nilpotent orbit.}$

• $\mathcal{O}^v = \text{principal nilpotent orbit in } \mathfrak{g}^v.$

Then, it's possible to choose $h^v = 2p \in \mathfrak{h}^v$

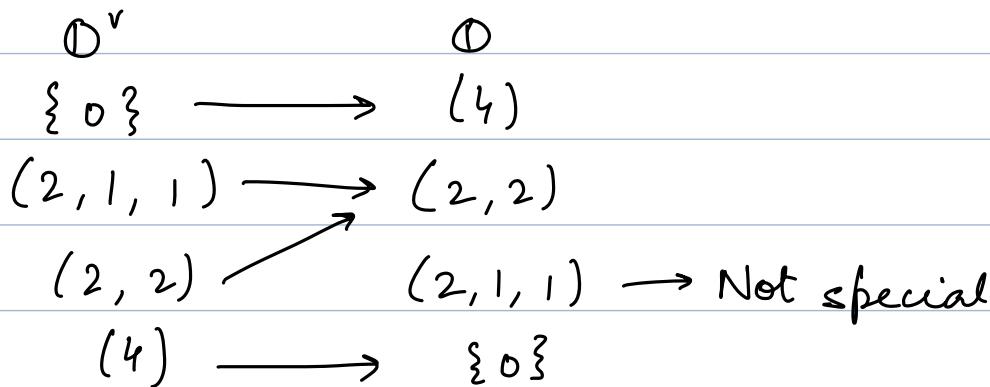
$\Rightarrow I_{\mathcal{O}^v} = I_{\max}(p) = \mathfrak{o}_p \mathcal{U} \mathfrak{o}_p \Rightarrow V(I_{\mathcal{O}^v}) = \{0\}.$

• $\mathfrak{o}_7 = \text{SL}_n = \mathfrak{o}^v$

Given a partition $\nu \vdash n \rightsquigarrow \mathcal{O}_\nu$ nilpotent orbit
with Jordan type ν .

Then, $d(\mathcal{O}_\nu) = \mathcal{O}_\nu^s.$

• $\mathfrak{o}_7 = \mathfrak{sp}_4$. Then, $\mathfrak{o}_7^v = \mathfrak{so}_5 = \mathfrak{sp}_4$



Construction of \tilde{d} : $\tilde{d}(\mathcal{O}^v)$ should be a cover of $d(\mathcal{O}^v)$.

Case 1 : $\mathcal{O}^v \cap \text{proper Levi subalgebra of } \mathfrak{o}^v = \emptyset$ (distinguished)

$\iff Z_G(e^\vee, h^\vee, f^\vee)$ is finite.

Then, $\tilde{d}(\mathbb{O}^\vee)$ = universal $\text{Ad}(\gamma)$ -equivariant cover of $d(\mathbb{O}^\vee)$.

General case: Pick minimal Levi L^\vee of \mathfrak{g}^\vee containing e^\vee .

$\hookrightarrow L \subset \mathfrak{g}^\vee$, $\mathbb{O}_L^\vee = L^\vee e^\vee \rightsquigarrow \tilde{d}_L(\mathbb{O}_L^\vee)$.

$\rightsquigarrow X_L = \text{Spec } \mathbb{C}[\tilde{d}_L(\tilde{\mathbb{O}}_L^\vee)]$, $P = L \times \mathcal{U}$
 $Y = G \times^P (X_L \times (\mathbb{Z}/p)^*)$.

$\tilde{d}(\mathbb{O}^\vee)$ = open G -orbit in Y .

Example: $\gamma = \text{sl}_n \Rightarrow \tilde{d}(\mathbb{O}^\vee) = d(\mathbb{O}^\vee)$

$\gamma = \text{Sp}_4$: $\tilde{d}: (2,1,1) \mapsto \text{orbit } (2,2) \leftarrow$
 $(2,2) \mapsto \text{double cover of}$
(probably)

Symplectic Duality (Braden, Licata, Proudfoot, Webster)

of conical symplectic singularities (with some decoration):
 X vs X^\vee

The duality swaps some invariants.

$X = \text{Spec } \mathbb{C}[\tilde{d}(\mathbb{O}^\vee)]$

$X^\vee = \mathcal{N}^\vee \cap$ Slodowy slice $e^\vee + \mathfrak{z}_{\mathbb{O}^\vee}(f^\vee)$

↑
transverse to \mathbb{O}^\vee

Pair of invariants :

$X \mapsto (h_x, t_x = \text{Lie algebra of max. tame in })$
{ graded Poisson auto. of $\mathbb{C}[x]$ }

Expectation : $h_x v = t_x$ and $t_x v = h_x$.

17/06/22

HC Bimodule

f.g.

$A \rightarrow$ graded Poisson algebra, $A_i = \{0\} + i < 0$ and $A_0 = \mathbb{C}$
 $\mathcal{A} \rightarrow$ filtered quantization of A

Defⁿ : Let \mathcal{B} be an \mathcal{A} -bimodule.

- i) A good filtration on \mathcal{B} is $\mathcal{B} = \bigcup_{j \in \mathbb{Z}} \mathcal{B}_{\leq j}$ s.t.
 \downarrow
vector space
- ii) Bimodule filtration $A_{\leq i} \mathcal{B}_{\leq j} \mathcal{B}_{\leq j} A_{\leq i} \subseteq \mathcal{B}_{i+j}$.
($\Rightarrow \text{gr } \mathcal{B}$ is an A -bimodule)
- iii) $[A_{\leq i}, \mathcal{B}_{\leq j}] \subseteq \mathcal{B}_{i+j-d}$ ($\deg \{., .\} = -d$)
(\Rightarrow left and right A -actions on \mathcal{B} coincide, so
 $\text{gr } \mathcal{B}$ is an A -module.)
- iv) $\text{gr } \mathcal{B}$ is finitely generated over A .

2) We say \mathcal{B} is HC if it admits a good filtration.

Example : 1) A , the regular bimodule, is HC.

(with good filtration given by the quantization filtration)

2) Subquotients of HC bimodules are HC.

Remarks : 1) Good filtrations aren't unique. However, if $\mathcal{B} = \bigcup_j \mathcal{B}_{\leq j} = \bigcup_j \mathcal{B}'_{\leq j}$ are both good filtrations, then $\exists m_1, m_2 \in \mathbb{Z}$ s.t.

$$\mathcal{B}_{\leq j+m_1} \subseteq \mathcal{B}'_{\leq j} \subseteq \mathcal{B}_{\leq j+m_2} \quad \forall j \in \mathbb{Z}$$

(Exercise)

2) When $A = \mathcal{U}_q$, this def" of HC is equivalent to the one stated earlier.

HC bimodules over quantizations of $\mathbb{C}[\tilde{O}] (= A)$.

A - filtered quantization, quantum comoment map

$$\Phi : \mathcal{U}_q \rightarrow A$$

\rightsquigarrow Every A - bimodule becomes a \mathcal{U}_q - bimodule.

Lemma : If B is an HC A - bimodule, it is also HC as a \mathcal{U}_q - bimodule.

Proof : $\Phi(q_j) \subseteq A_{\leq d} \stackrel{\text{by (iii)}}{\Rightarrow} [\Phi(q_j), \mathcal{B}_{\leq j}] \subseteq \mathcal{B}_{\leq j}$

Since $\text{gr } \mathcal{B}$ is finitely generated over A and A is

positively graded, $(\text{gr } B)_j$ are finite dimensional.

$\Rightarrow B_{\leq j}$ are finite dimensional $\forall j$.
by (i)

So, $\forall b \in B$ can be included into f.d. $\text{ad}(\log)$ -stable subspaces.

It remains to see that B is f.g. over \mathcal{U}_g .

Now, $\text{gr } B$ is f.g. over $A \Rightarrow B$ is f.g. as a left A -module.

$C[\tilde{O}]$ is finite generated over $S(\log)$ $\Rightarrow A$ is finitely generated left module over $\mathcal{U}_g \Rightarrow B$ is finitely generated over \mathcal{U}_g .

Classification, application and generalization

Classification result : Let X be conical singular symplectic.
 $A = C[X]$. $A \rightarrow$ filtered quantization

$\rightsquigarrow \text{HC}(A) =$ full subcategory of $\text{Bimod}(A)$ whose objects are HC.

Remark : Every f.d. bimodule is HC.

(Hence, classifying all HC-bimodules should be intractable.)

Let $B \in \text{HC}(A)$, pick good filtration $\rightsquigarrow \text{gr } B$
 $\rightsquigarrow \text{Supp}(\text{gr } B) =$ subvariety in X defined by $\text{Ann}_A(\text{gr } B)$

Exercise: By an earlier remark, show that $\text{Supp}(\mathcal{B})$ is independent of the good filtration.

(Hence, we can simply call it $\text{Supp}(\mathcal{B})$).

- (Hander) $I = \text{left annihilator of } \mathcal{B} \subseteq A$. Then,
 $\text{Supp}(A/I) = \text{Supp}(\mathcal{B})$.

Hint: $A/I \curvearrowright \mathcal{B} \hookrightarrow A \rightsquigarrow A/I \hookrightarrow \text{End}_{\underline{A^{\text{op}}}(\mathcal{B})}$

has a good filtration
induced by that on \mathcal{B}
and $\text{Supp}(\text{End}_{A^{\text{op}}}(\mathcal{B})) \subseteq \text{Supp}(\mathcal{B})$

- If A is simple, $\text{Supp}(\mathcal{B}) = X$ for $\mathcal{B} \neq 0$.

Duf: The category of HC bimodules with full support is the Sane quotient:

$$\overline{\text{HC}}(A) = \text{HC}(A) / \{ \mathcal{B} : \text{Supp } \mathcal{B} \subsetneq X \}.$$

It turns out that $\overline{\text{HC}}(A) \cong \text{Rep. (finite group)}$
as symmetric monoidal

categories

Controls finite étale covers of X^{reg}

$\pi_1^{\text{alg.}}(X^{\text{reg}}) \leftarrow$ algebraic
fundamental group

$$\pi_1^{\text{alg.}}(X^{\text{reg}}) = \varprojlim \pi_1(X^{\text{reg}}) / \text{finite index normal subgroups}$$

Fact: (Namikawa) $\pi_1^{\text{alg.}}(X^{\text{reg}})$ is finite, and thus, equal to the maximal finite quotient of $\pi_1(X^{\text{reg}})$.

Example: 1) $G \rightarrow$ simply connected, semisimple

$\tilde{\mathcal{D}} = \mathcal{G}/\mathcal{H}$. Then, $\pi_1^{\text{alg}}(\tilde{\mathcal{D}}) = \mathcal{H}/\mathcal{H}^\circ = \pi_1(\tilde{\mathcal{D}})$

2) $X = V/\Gamma$, $\Gamma \subseteq \text{Sp}(V)$ is finite.

↪ Symplectic vector space

Then, $\pi_1^{\text{alg}}(X^{\text{ug}}) = \pi_1(X^{\text{ug}}) = \Gamma$.

This is because $X^{\text{ug}} = \underbrace{\{v \in V : \Gamma_v = \mathbb{1}\}}_{\text{11}} / \Gamma$

$V \setminus \bigcup_{\text{finite}} \text{symplectic subspaces} \leftarrow \text{simply connected}$

For general X , let $\Gamma := \pi_1^{\text{alg}}(X^{\text{ug}})$

Classification Theorem: (Losev '18) $\overline{\text{HC}}(\mathcal{A}) \xrightarrow{\sim} \text{Rep}(\Gamma/\Gamma_A)$.

$\Gamma_A \triangleleft \Gamma$, under minor restrictions on X , one can compute Γ_A from the quantization parameter $\lambda \in \mathfrak{h}_X$.

Example: $\mathcal{A} = \mathcal{A}_0$ (canonical quantization)

The cover \tilde{X} of X^{ug} corresponding to $\Gamma_{\mathcal{A}_0} \triangleleft \Gamma$ is as follows:

$\tilde{X} = \text{Spec}(\mathbb{C}[\tilde{X}])$ is a ramified cover of X .

Recall $\mathcal{L}_i \rightarrow$ all codimension 2 symplectic leaves of X .

$\rightsquigarrow X' = X^{\text{ug}} \sqcup \bigsqcup_{i=1}^k \mathcal{L}_i$

- open with $\text{codim } X \setminus X' \geq 4$

\tilde{X} is maximal s.t. $\tilde{X} \xrightarrow{X} X$ is unramified over X' .

Let $\Gamma' = \Gamma/\Gamma_{\mathcal{A}_0}$, $\rightsquigarrow \Gamma' \curvearrowright \tilde{X} \xrightarrow{\Gamma'} X$

\tilde{x} is conical singular symplectic \Rightarrow canonical quantization
 $\tilde{A}_0 \curvearrowright \Gamma'$ and $\tilde{A}_0^{\Gamma'} \cong A_0$.

$\tau \in \text{Rep } \Gamma' \Rightarrow \mathcal{B}_\tau = (\tau \otimes \tilde{A}_0)^{\Gamma'}$

- HC-bimodule $\tilde{A}_0^{\Gamma'} = A_0$ -bimodule

$\tau \mapsto \mathcal{B}_\tau$ is the map $\text{Rep}(\Gamma') \xrightarrow{\sim} \overline{\text{HC}}(A_0)$.

Application: Unipotent HC \mathcal{U}_0 -bimodules
 \downarrow ~ orbit method

Nilpotent orbits and covers

Theorem / Defⁿ: (LMBM'21, MBM'21) For a nilpotent cone $\tilde{\mathcal{O}}$ and its canonical quantization, A_0 is a s.s. \mathcal{U}_0 -bimodule. The simple constituents are unipotent HC bimodules associated to $\tilde{\mathcal{O}}$.

Can:

- Describe kernels of $\mathcal{U}_0 \rightarrow \tilde{A}_0$ (i.e. compute corresponding elements of \mathfrak{h}^*/W)
- Classify unipotent bimodules corresponding to $\tilde{\mathcal{O}}$
 \longleftrightarrow Irreps. of finite groups

Most of these bimodules are unitarizable.

Techniques involved in the proof of the classification theorem:

Step 1: Produce full monoidal embedding:

$\text{HC}(A) \longrightarrow \text{Rep}(\Gamma)$.

$\rightsquigarrow \exists ! \Gamma_A \triangleleft \Gamma$ s.t. image = $\text{Rep}(\Gamma/\Gamma_A)$.

What does this embedding do on objects?

Let $B \in \text{HC}(A)$ and pick a good filtration.

$\rightsquigarrow \text{gr } B \in A\text{-mod}.$

$\text{gr } B$ comes with $\{ \cdot, \cdot \} : A \times B \longrightarrow B$

$$\{ a + A_{\leq i-1}, b + B_{\leq j-1} \} \subseteq [a, b] + B_{\leq i+j-d-1}$$

So, $\text{gr } B$ becomes a f.g. Poisson A -module.

$\rightsquigarrow (\text{gr } B) \mid_{X^{\text{reg}}} -$ Poisson coherent sheaf on \downarrow

smooth, symplectic

Fact: $\exists ! \mathcal{D}_{X^{\text{reg}}}$ -module structure on a Poisson $\mathcal{O}_{X^{\text{reg}}}$ -module lifting the \mathcal{O} -module structure, where

$\{ f, \cdot \} \in \mathcal{D}_{X^{\text{reg}}} (f \in \mathcal{O}_{X^{\text{reg}}})$ acts by $\{ f, \cdot \}$ coming from the Poisson module structure.

$\text{gr}(B) \mid_{X^{\text{reg}}}$ is an \mathcal{O} -coherent \mathcal{D} -module

||

vector bundle with flat connection

Pick $x \in X^{\text{reg}}$ \rightsquigarrow monodromy representation

$$\pi_1(X^{\text{reg}}, x) \curvearrowright (\text{gr } B)_x$$

factors through $\Gamma = \pi_1^{\text{alg}}(X^{\text{reg}}) (\longleftarrow \pi_1(X^{\text{reg}}))$ because Γ is the maximal finite quotient.

So, once we pick a good filtration for \mathcal{B} , we get a Γ -rep. on $(\text{gr } \mathcal{B})_x$. This is exactly the description of the functor above on the level of objects.

Step 2: How to determine \mathcal{F}_A ?

A \rightsquigarrow restrict to X^{ug} to get a 'microlocal' sheaf of filtered algebras on X^{ug} , denoted by A^{ug} .

$V \in \text{Rep } \Gamma$ \rightsquigarrow vector bundle with flat connection on X^{ug} that uniquely quantizes to a sheaf of A^{ug} -bimodules $\mathcal{B}_V^{\text{ug}}$.

V lies in the image of $\text{HC}(A) \iff \mathcal{B}_V^{\text{ug}} = \text{microlocalisation of an HC } A\text{-bimodule} (\iff \mathcal{B}_V^{\text{ug}} \text{ extends to } X.)$

It may happen that $\mathcal{B}_V^{\text{ug}}$ doesn't extend (even that $\Gamma(\mathcal{B}_V^{\text{ug}}) = 0$). Equivalently, the pushforward of $\mathcal{B}_V^{\text{ug}}$ to X may not be coherent.

$$X' = X^{\text{ug}} \amalg \bigcup_{i=1}^k L_i, \quad \iota: X^{\text{ug}} \hookrightarrow X'.$$

If $\iota_* \mathcal{B}_V^{\text{ug}}$ is coherent, $\Gamma(\iota_* \mathcal{B}_V^{\text{ug}})$ is the required extension. Checking that $\mathcal{B}_V^{\text{ug}}$ extends nicely to L_i reduces to a question about the transverse slice Σ_i to L_i , where Σ_i is a neighbourhood of 0 in \mathbb{C}^2/Γ_i , $1 \mapsto \text{parameters of } A \text{ in } h_x = \bigoplus_{j=0}^k h_j$ with

$h_i \hookrightarrow h_{\Gamma_i} = h_{\mathbb{C}^2/\Gamma_i}$, $l_i = h_i$ - component of h .

\rightsquigarrow The quantization A_i of $\mathbb{C}[\mathbb{C}^2/\Gamma_i]$ with parameters λ_i .

$\Gamma_i \rightarrow \Gamma$ via $\Sigma_i \hookrightarrow X$ $\rightsquigarrow \Sigma_i \setminus \{0\} \hookrightarrow X^{\text{reg}}$.
 $\rightsquigarrow \phi_i : \Gamma_i = \pi_i^{\text{alg}}(\Sigma_i \setminus \{0\}) \rightarrow \pi_i^{\text{alg}}(X^{\text{reg}}) = \Gamma$.

Observation: $\mathcal{B}_v^{\text{reg}}$ extends nicely to $h_i \Leftrightarrow \phi_i^*(v) \in \text{Im}(\text{HC}(A_i))$

This can be described as long as Γ_i is not E_8 .

(E_8 is the only non-solvable Kleinian group.)

Generalization: Quantizing singular Lagrangians.

$X \rightarrow$ conical symplectic singularity. A conical singular Lagrangian in X is $Y \subseteq X$ s.t.

0) Y is closed and C^∞ -stable

1) $Y \cap X^{\text{reg}}$ is Lagrangian (half dimensional,

$$\omega^{\text{reg}}|_{Y \cap X^{\text{reg}}} = 0$$

2) \mathcal{H} leaves $\mathcal{L} \subset X \Rightarrow Y \cap \mathcal{L}$ is isotropic in \mathcal{L} .

3) $\overline{Y \cap X^{\text{reg}}} = Y$

Favorable property: (That we'll assume on Y)

(\heartsuit) $\text{codim}_Y Y^{\text{sing}} \geq 2$ (Y is irreducible)

example : $X \times X^{\text{off}}$ $\xrightarrow{X^{\text{off}} \rightarrow X \text{ with } \{\cdot, \cdot\} \text{ mult. by } -1}$

\cup
 $X^{\text{diag.}}$

Then, $X^{\text{diag.}}$ is singular Lagrangian satisfying (♡).

Question : Quantize Y with additional structure.

If (♡) holds, the addition structure is a twisted local system (= vector bundle with twisted flat connection) on $Y^{\text{reg.}}$.

The result of quantization is an A -module M s.t.

$\text{supp}(M) = Y$ and $\text{gr}(M)/_{Y^{\text{reg}}} = \text{chosen twisted local system}$

This classification question should reduce (under ♡) to the case when $\dim(X) = 4$ and $\dim(Y) = 2$.

Using this, Laca and Shlyakhtenko have classified irreducible $\text{HC}(G, K)$ -modules with full support over quantization

of $\mathbb{C}[\mathbb{O}]$ s.t. $\text{codim}_{\mathbb{O}} \bar{\mathbb{O}} \setminus \mathbb{O} \geq 4$.