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Motivationiarbit method

G connected lie group
Goal Classify unitary G irrefs

Kirillov 19611 Orbit method

of Lie G GA g of
adjoint coadjoint refs

Theory Keillor If G is nilpotent simplyconnected
unitary G viets iso I G orbit in g 3natural

Why should coadjoint orbits appear in this classification
Answer Quantization connection between classical and

quantum mechanical systems

Quantum Classical

Phase Hilbert I

Space Space



Symmetry Unitary
representation

Most G acts

symmetric

the up is
irreducible transitively

I Manifold M with Poisson bracket
IR linear Ca M x C m co m

s t is a lie bracket

Leibniz fg h f h g t g h f
to give 3 A bivector field P with certain

proprieties

s t f g LP If a dg

Special case w ie a symplectin foam on M

Cdw to non degenerate
Mrs bivector w i n 3

non degenerate Poisson

structure

I Lie group G S M preserving 3 and

Hamiltonian

G A M mis G equiv linear map



of rect m

5 to Sm

Def The classical comoment map is a G equivariant
linear map of of m sit

I m of s a f es E of

Dually we get a moment map p M of
Nemi s of es m

G A M is Hamiltonian if 3 is G invariant

and we've fixed a comoment map
If G is connected the G invariance follows from
the existence of the comment map

Exercises Show that 4 is a lie algebrahomomorphism
i e q es n3 d s 4121 f es ne of

Example of is Poisson with unique 1 s t

es n 15 23 t s n E g E C of
Then this action G S of is Hamiltonian with

4151 5 Iequivalently n Id

Transitive Hamiltonian actions



Exercise 2 at of ms M Gx Want to construe

Pan E P d Tm
i e 1 P E P Mtg Then Pa E A Ts and is

non degenerate there uniquely extends to a

G invariant Pa E P INTga which is Poisson

2 Wa Pai is the unique G equivariant 2 form
satisfying Wa ga 2x La Les y

3 GA Ga is Hamiltonian with p Gx us of
the inclusionmap

Exercise 3 Let M be a Poisson manifold with transitive
Hamiltonian G S M Then

1 Im n E of is a single orbit
21 p M Im n ie a cover and i Poisson i.e

µ Ca Im all C m intertwines

3 The Poisson structure on M is non degenerate and

µ is a symplectomorphism

Conclusion Transitive

Hamiltonian action
G equivariant coven

of coadjoint orbits

Exercise Given the Hamiltonian actionof a lie group



on a simply connectedmanifold then it can be seen

as an action of a central extension

So the orbit method predict a connection

equivariant a cones Pitt unitary a

of coadjont orbits infs

If G in nilpotent this is a bijection
There are no complex G covers

If G ie semisimple this isn't a bijection
Eg If G ie compact s

unitary refs finite dim refs
classified byhighest wts

Also a

G is semisimpet
ko ladyaint
orbits a Weyl

chamber

Filtered quantization of algebras

Many algebras of interest forgeometric representation
theory arise as filtered quantizations

Setting A is f g commutative G algae s t

1 A n Zz graded A Ai l as rector spaces



Sit A Aj E Ait
21 Poisson compatibility 3 A x A A

3 7 a E Z o s t digen a i e

Ai Aj E Ait j a

Example
1 of f d lie algebra A S g 619 3
F 3 on A s t 5 23 15.23 with

usual grading and a 1

2 V symplectic vector space with form w

A SCV E Q v I usual grading
F 9 3 s t u v3 W u v1 f u u EV

and a 2

Def I Filtered quantization ofAl This is a pain Asi
where A is an associative G algebra with an algebra

filtration A YI Ae as recta spaces s t

I E Ae and Asi te je Aity t i j
and degreeK 3 E e i e

Aei Aaj E Ait j a

me get Asi As i which is a Poisson

algebra with

I



a As i i b t Aaj a b t A city a i

Fei Haj

i ge lift A is an isomorphismofgeaded
Poisson algebras

DI An isomorphism of filtered quantizations f it
It i is a filtered algebra isomorphism Y A A

s t gr y get t get

II

gtf stop
Then A NCogt is a filtered quantization by PBW

thrown

2 A S IV
then A W v t IV Luxou r u wCu ul

theWeylalgebraI
n v f V

is the unique filtered quantization Exercise

Problem Given A clarify it filtered quantization
aft isomorphism

Cannot solve without additional restrictions
on A



Restriction symplecticsingularities

We'll care about A coming from nilpotent orbits in

s s lie algebras The restriction holds in that sitting

Nihotentorbitlinseatgehan
G connected s s algebraicgroup e

of lie G g ofE of via the killing form
So adjoint orbits coadjoint orbits
G S of with all orbits symplectic algebraic varieties

eventdim

Def s e of is nilpotent if it is upresented by a

nilpotent operator in some any1 faithful of ref

Remy i If of is classical l sin son spn thennilpotent
elements nilpotentmatrices

2 For g t G 5 t of
5 is nilpotent e Ad Igi 5 is nilpotent

So we can talk about nilpotent orbits

Question How to classify nilpotent orbits

lie alg homo Str of



Def An sea title in of is a triple e h f tof
satisfying the defining relations of she i.e the

map of she of
e Li h t

is a lie algebra homomorphism

Exercise a f are nilpotent

Thorin I Jacobson Morozov F nilpotent e Eof can
be included into an Sl trifle

Theory Kostant If le h f le h f l are s t

triples then Fg f G s t

Ad Ig e e AdIgth h Ad g f f

Corollary The map
conjugacy classes nilpotent orbit
of sin of

le h i fl t e

is a bijection

Exantus of sin nilpotent orbit e partitionsof n

by taking Jordan
type



she of are just n dim she ref

Conjugacy classes isom classes of shr refs
n dim sta uh is it V Id it

6 di din ref of sla
partitions Id dull

e e si acts by one Jordan black on every inch
thence the above corollary reduces to the usual linear

algebraic classification

Exercise If le h fl and le h f l are sla tripling
this f f

take G Spn on On On isn't simply connected

On Son 2 221

Prof Wilf G orbits in of
Is

Partition of n when every even forOu odd forSta

part has even multiplicity

Remark A milk orbit for On split into two son orbits
all part of the corresponding partition are

even

Next we discuss the algebras C Q regular a he



polynomial functions 0 is a nip G orbit in of

theory G 3 in finitely generated graded and
has Poisson bracket of degree 1

Proof Isketch1 0 symplectic variety
us a 10 is equipped with a Poisson bracket

Fact 1 of nilpotent orbits in of is finite

heroin of conjugacy classes of lie alg homo

of of for orbit s s Lie algebras is finite

It is char that a O is finitely generated

Exercise The nilpotent cone N g eof 5 is with
is Zariski closed

I 0 consists of nilpotent orbits of whichthere
are finitely many and all have an even dimension

coding I 01 07 22

Fact 2 Let X be an affine irreducible variety Let

X E X be a smooth open subvariety s t



codim x X X 22 Eg X D X o 0

Then A x is the normalization of e x

e x is finitelygenerated

Hence 6107 is finitely generated

Next there is an action of E on of by dilations
t g t's

Thin 10 is a stable Ifollows from theclassificationin classical typist

A us grading on a o

Exercise The degree of the Poisson bracket is 1

Follows by following the dif of
in terms of the symplectic form I

14 061

Equivariant coven of nilpotent orbits

Let e E of be nilpotent and H 2 let
An equivariant cover of G e G H is G H sit

H 2 H 2 H are subgroups of finite index



Hence
equivariant conn subgroups of

of G e 2 le 2g let

Exqin 1 Zg et Zale h f A unipotent
t t

reductive connected

21 2 e 2 let 2 le hit Zale h.tl

Prof G Sin On Spn Let D Ge E og be
a nilpotent orbit with partition th nd

Isuperscripts are multiplicities
1 G Sin in 2 le h fl t lg gal E I GL ki

s t dit g
then 2g e h f Zg e h f

GcIedito

2 G On or Spa me 2 le h t II Gi where

Gi Odi if G On and i is odd
or

G isSpn and i is even

Spa otherwise



So 2g e h f 2g e h f t 22

where a of O factors
odd i with di to for G on
ever i with di to for G sp

Example G Sp n 0 corresponding to 2 1
2

2g let 2 let
0 2 22

Then a 2 fold cover of Q is given by 6 03

Theorem Let I be G equivariant cover of Then

E is finitely generated graded Poisson

Shitchoftytjoisson because of a synthetic
Because is symplectic

The morphism E O has finite fibres
So there exists a Stein factorization

E O

X Spec integral closure of ELO in the fraction

field of a E3

Thn X O is finite and E L
X



X I E E X has codim 2

as
coding 0102 2

is smooth and so by a fact from last
time I a To x which is f g

To show that a 03 is graded we note

that it's possible to lift ex a 0 to To

after rescaling
That is 2 5 Inimitable d

SingularsymplecticVarities

If If X is a smooth algebraic variety
then X is symplectic if it has a symplectic
form

X is Poisson Ox has 3

Beauville 2000 Notion of symplectic for
singular Poisson varieties

Def Let X be a Poisson variety We say X is
Isingular symplectic has symplectic



I regular symple symple
singularities1 if
i X is normal and X is irreducible
ii The Poisson structure on Xu is non

degenerate
Let wing be the symplectic form on XM

ni F resolution of singularities T Y X

i e Yis smooth IT is proper birational
s t T WY a 2 form on t XM
extends to a regular 2 form on Y

Ramat

Beanvilli showed that if iii holds for some
resolution it is true for all resolutions

If I wing extends to a non degenerate
form on Y we call Ya symplectin resolution

of X

Examples

D Symplectic quotient singularities
V f d symplectic vector space with

form w

Let r E sp ul be a finite subgroup



Construct X V r spec econ

P preserves 3 on a LV
Afv is a Poisson subalgebra on Elul

i x is normal
ii XMt free P orbits in V3 us unramified

Lit n V V r
Consider q y xing X ng

Then why is obtained by descent of w from 2 XY
ai checked by Beauville

Sometimes V M has symplectic resolutions
a dim V Z P E SL la

x aye
Take Y to be the unique minimal resolution

For example if P I 13 Y T IP
Thin Y is symplectic

Remark This exhausts all dimension 2 symplectic
singularities

bl V at A Sn Ms X V r

Tsymplectic Thb n Eresolution



4 X Shee Q E
Theory X ie singular symplectic

I ca Panyusher Hinrich
General case follows from here by some

algebraic geometry

When does X admit a symplectic resolution Y
and what does it look like

Answer Y is always T G P

Here P is a parabolicsubgroup of G That is

equivalently P containts a Borel

G P is projective

We have a decomposition P L X U

T t
unipotent

connected reductive
Levi subgroup

For G Sin we pick a composition n n t the

p IIIpity 5 2 1 2



t

Mrs j block diagonal

U Ku CP L

Let n lie ul

Thin T G P G x of p
t

t
cotangent space at eP

G x og p p

where P acts via p g al gt b x

I g a E G XP of p
T

P orbit of g a

Thin we have a Hamiltonian action
G A T G p

Note that p
t

n w n t the killing form
g f n

so T G p G xPn Is of I of
where µ is the moment map



g a Ad Igls
We can check that this is well defined

Exercise p is proper In fact it is projective

thence In Inl is closed
Let's describle Im at Gn E N milk com

as a consist of nilpotent elements
Im lol is irreducible became T GIP is
9
union of finitelymany orbits
F a nilpotent orbit Op C of s t Im n Of

fact to be seen later dim Op dim t Gpl

p is finite to one generically
G A T IG P has an orbit top of

dim equal to dim t G pit
Then Ep is open and is a cover of Op

I
called Richardson orbit

Let X Shee Q Ep
Exercise We have a commutative diagram



T IG P of

at

s t it is a symplectic resolution

Exantus
I P B Bout Y TH G B

Thin im p I N
T T IG B1 N is a symplectic
resolution called the Stringer resolution

E N in this case

H G Shn a Q Oy when t is a partition
Thin we can construct it
fg d D e at I

let a n t the is a composition obtained

from t's in some order
Ms can construct the corresponding P E G

Thin O is normal Kraft Procesi
and t G Pl G is birational and so

is a symplectic resolution



31 of spy and consider the partition 12 21
Let P P be the semisimple rank I parabolics
Then T G Pil are symplectic resolutions for
spec Elo Shea a 83

degree 2 cover

Classification of filtered quantization

Setting A is a fig commutative graded
Poisson algebra with degree of 3 a

s t 1 A C KE Z o
21 X Spec Al is singular symplectic

An X satisfying these two conditions is said to
have conical symplectic singularities

Theory Loser 2016 Suppose A satisfies 1 21

Thin F f d rector space h and a finite
crystallographic reflection group W x A hx sit

when action

filtered quantizations of A n T Lx Wx
natural

Wx Namikawa Weyl group



Example of s s Lie algebra and X N

Then X has conical symplectic singularities
In that case h h and Wy W

K Cartan subalgebra W Dyegroup

Construction of quantization
N g 22g e e Ch J

W

Z Harishchandra isomortlin
IWe consider the usual action of W on a Ch
here twisting the action doesn't change the

algebra

let de h w as maximal ideal in 6th
I

Y Hog Roymal
As my E 2 1Noy my is a 2 sided ideal

Exercise U is a filtered quantization of act

The correspondence in the theorem is
U A

9 1 How to compute hx
2 How to construct a quantization starting



from a point in hx

Partial answer to 1 Suppose Y is a symplectic
resolution of X Then by H Y C

Example X N Y T G B

H Y E H2 G B E

let G be simply connected and F C G be an

algebraicgroup Thin using the spectral
sequence for the cohomology of fibre bundles

H2 G F E H F o e
HF

tuna H G B K H B E h which
is exactly what we expected

15 0621

Recall A finitely generated commutative Poissonalgebra
over G X Spec A Suppose A i o ti co and Ao G

i.e x is conical and X is singularsymplectic



it x is normal

in XY is symplectic with form wig
in For all resolution of singularities I Y X

I Wagh extends to Y

Theorem filtered quantization n I hx W

How to compute hx
If y x is a symplectic resolution we take

hx H Y E

G factorial tuminalizations

In general we replace Y with a maximal partial Poisson
resolution of X i e

hat T Y X proper birational Ymay be singular
poison Y is a Poisson variety it is a Poisson map i e

H f g E e x it f gi T f gMoth If T Y Y i proper birational Poisson then
I is an isomorphism

In particular Y must be normal Otherwise t Y Y

the normalization morphism is such that I 1 Poisson
structure on Y making IT a Poissonmap Kaledint



Exercise This Y is singular symplectic
Hint Take a resolution I Y Y that is an

isomorphism over YT Then
Tio T Y x

Iggy
extends to Y't

the we don't use the maximality of Y 1

Remark Using this argument one can show that a

symplectic resolution is maximal

Existence of a maximal partial Poisson resolution Y
is non obvious but true Also it is known that
Y has an algebra geometric characterization It's

A factorial and terminal

Q factorial Given a scheme 2 we have its Picard

group Pi 27 group line bundles on 23 iso

Def Let 2 be a normal irreducible variety Wesay
2 is Q factorial if Coker Pic 2

a Pic 241
is torsion

Example Let I be a G equivariant cover of a
Tpotent orbit 0 in g Let x Spec 6103



As X is conical Pie x 03

geaded Nakayama lemma

Next we compute Pic XM Now O X with

complement having codimension 22 Thus

Pin M Pic i

Now E G1H with G simply connected
Pic GA I E H Hom H E

So X is g factorial Hl is finite

He 2 let

2Gt
A unipotentgroup

This has been computed for G classical

For G Shu 8 t o f e g
X is g factorial All parts in the partitionof

are equal

For G Spn Soma I 10 x is g factorial
For G Som x is almost always 9 factorial
the exact condition can be described in terms ofthepartition I

Terminal DiffProf Namikanal Let 2 be singular



symplectic Then 2 is triminal if codimz 2127 2 4

Example Let of be classical 0 C of be a nilpotentorbit
Fx Spec o

iodine X XT 24 coding 010 24 1 1

I Thepartition t corresponding to satisfies
di k t it t 1

HE TE

Theorem Special case of BCHM Maximal partial
resolution of X exists and is g factorial and
terminal Also any 9 factorial and terminal partial
Poisson resolution is normal

Thepoint is that many questions about x can be
addressed by studying Y

Forexample h H yn El

Next we describe Y when X a To
The idea is to use paraboli Lustig Spattenstein
induction



Fix L E L E G Levi Q is an L equivariant
cover of a nilpotent orbit in It Pick parabolic P

I 2 is only reductive and not semisimple So we

might need to replace it by its semisimple quotient

P L X U P I m singular symplectic
variety y with a Hamiltonian G action

If 0 03 Y t IG P h Lie u

TAG G x of using left invariant vectorfields
GXG A T G Hamiltonian action givenby

Ig gul lg al g g g i g a

Action on the right has moment map
g x re a to be corrected

Action on the left has moment mat

g al to g a

X Spec e E3 A L is Hamiltonian with
moment map Ni X T es e finite

morphism
P L A X no Hamiltonian action of P on Xu



with moment map pi X l n p
Thin T G x x c has a Hamiltonian P action

p g a x I gt
t
a px with moment

map N g a x a1 t Na x

Y µ o P

p lol Ig a x 41 p x Ig a x1

Is J
G x x x log pl g x a m x

Then Y N o y G x x x glp
Given x E Xi B E lof pl't us g x p

The P orbit of
Ig p

Y has a canonical Poisson structure and a Hamiltonian

g action

Intexacin A Poisson algebra
G algebraicgroup with G 7 A rationally via
Poisson algebra automorphisms

Let of of A be the co momentmap that is a G



equivariant linear map s t 6191 LA
for all 5 E of Then A A pig

G is Poisson with
bracket

at AdIgt b t A gl a b A 4 g
This is called the Hamiltonian reduction of A

As y is not affine to define on Oy weneed
to sheafify

Let w G G p n Y G x Xix glp G p
be projections which are both affinemorphisms

Let U E G P be affine us can consider a E ul

Exercise We can identify Ely ul with the
Hamiltonianreduction of a w tut x of x x under

the P action

Hence we get a bracket 3 on Oy
Also G A Y whose moment map p we compute

Now G X P A T G X X
M G X P A p o

m G A Y N l lol P
Then moment map G A Y g x p ts g pix p



Exercise N is proper
N is indeed a moment map
Im w is the closure of a single orbit

Now recall that one goal was to construct a

9 factorial terminalization

Theorem There is a bijection between
1 O G equivariant covers of nilpotent orbits inof
2 L E L is Levi Oi is an L equivariant cover

of a nilpotent orbit 1 sit X Spec ECT is

a g factorial terminalization

The bijection 2 I is constructed as follows
Choose P parabolic Ms Y G x X x log p has

a unique open orbit 0 Idepending on L Q
not on P Then Y is a Q factorial terminals
cation of X Spee e 07

Remark L E is considered upto G conjugacy

I X is 9 factorial and terminal So is Y
III h H ly ng c e e e A ti G P at

4 is an isomorphism because It x it d o

for i 1 2



For i 1 this is automatic
For i n X L is g factorial H xft e

II The claim that G has an open orbit in T
t

classical It follows from
dim Y dim p yl to be explainedI

II to show that 2 I is a bijection ti e to

recover L II from X we use deformations
Q E I admits a Poissondeformation over hx s t each

fibre has a Hamiltonian action of G We take the

generic fibre we look at the moment map image
which is the closure of a single orbit

I centralize of semisimplepart O L orbit

of nilpotent part

Lumina dim 741 dim I p yl

Proof Deform z e e e C p
m Yz p Iz t

y GXP x x log pl Yz G x P lx x of p xz

Iz equi dimensional
fibres



Pick z E 3 generic Gz L

Fats We have an isomorphism
Yz G XPI Xcx of p x 23 T G x x x 231

n Yz of Ig x to g z NLCx
is finite and so the image is the closure of a

single orbit
So dim y dim Yz dim p yall

thence it remains to show that dim of n Y
dim of p lYz

Ya p az i ez

ta
g
IT g
g G She aCg 3G

Then in it o p tig p Yaz but

n Yaz single point for any r e a

a

thin p Ynet is the closure of a single orbit
Tig121 t t t t In Yaall is a curve

Now in n I freimage of O under



ringgit I curve ta n yet

dim Im n dim N yall I dim Y

corrections
1 G E G x of via left invariant vectorfields
I g gu g al g gg it goal

2 T G P is not the only possible symplectic
resolution forspec a 63
For example 42 Spec a E3 for

I a2h o I
Almost 4 rank one orbit in sp2h
All possible symplectic resolutions are of theform

GXP Ig yl x a 2h

Now let x be conical singular symplectic
Ms h x Wx

H ly ng al
where Y X is a g factorial terminalization

How to recover hx Wx from X itself

Examfle P E SL z e be a finitesubgroup



ms x a r

Upto SL conjugacy P's are classified by tyke
ADE Dynkin diagrams

Arms r g eat s

Minimal resolution of E r

Isomorphism Tt
away from zero Fr

Then T t 03 U IP s whose intersection is

either f or is transversal at a singlepoint

Ms can construct a graph whose vertices are the
IP s and we have an edge between a pair of
vertices if the corresponding P s interact

Thin this graph gives us the correspondingDynkin
diagram

Y Qtr is homotopy equivalent to t o

Now H2 ti ol Q vector space with basis indexed

Is by components
Lp Cartan space of the Dynkin diagram



Basis element corresponding to IP simple roots
W r Weylgroup of theADE Dynkin diagram
then

f h and Wx Wr

In general hx II hi A Wx It Wi
h H X M E hi Wi c codimension 2

Symplectic leaves

Def X Poissonvariety An algebraic symplectic
leaf in X is a locally closed subvariety L E X s t

i L is irreducible smooth
ii L is a Poisson subvariety i.e t open affine
U E X the ideal of zeroes of L n U E U is
stable under a U 1 7 on Oe

nil on L is symplectic

Exankle If G is a connected algebraic group then
the symplectic leaves in of G orbits

theorem Kalidin If X is singularsymplectic then
X I finitely many symplectic leaves

Let La Lk be codimension 2 symplectic leavesof



Goal Li runs hi Wi

Step 1 Usr Li to construct a Kleinian singularity f
To get Ti consider formal transverse slice Ei to
Li in X Then Ei is a codim 2 Symplectic singularity

then Ei is a formal neighbourhood of O in a Mi
for a unique Pi

Pi mus h
ri We

It turns out that Tiki why why.in
Thin hi hitkit

Construction of the it Lil action monodromy
g factorial terminalization y X

S
Yxx Ei p

É
symplectic resolution because Y is terminal

Yxx Ei is completion at ti 101 of aTri So
t y e hi s t y lyt t t lol a yr ath t

Varying y m t Ihi yl A components on Ty y

mm Action of it Lil on hp Wr by diagram
automorphisms

Then we can define
h i hot

hi
wi willhit



Example Reference Shadowy's book

of simple lie algebra N E of
leaves in N orbits

Fact F Codim 2 leaves a k a semiregular orbit

For sin we have n i i rig nl

Sont g 2n 1 12 ng anti

span 12m 2 21 ng 2n

Son 2n 3 3 I ng 2n 1,1

XM E 03 thence hi ha Wx Ws
ng

If of is of ADE type then P is of the same tyke
and the monodromy action is trivial

of Es T subug
Bn Aunt 2 22

Cn Dn 2122

F E 2 221

Gu Da 53

Thin T Li acts on the simply laced Dynkindiagram

by folding For example for Eg



is ay ay a atty 4 it as

I which is the root system

tic at m ÉÉ
Pie YM Lyng X M I divisors in the fire image

of co dim 2 leaves I rest

The rest has co dim t and so doesn't affect
thePicard group

Pic YM z e Pic XM
z
c h o

ti yug a A hi
wed comp

16 0122

Recap G semisimple E G equivariant cover

of a nilpotent orbit in oft
A El EI is graded Poisson

mm X spec Al is conical singular symplectic
Goal Construct filtered quantization of A



Upto isomorphism they are parametrized by lx Wx

For this we construct Y X g a f factorial terminalization
and take h x H YM E L equivariant
Construction of Y take Levi L E G nilpotent cover I and

Xp Spec al oil is g factorial terminal
Choose parabolic P with Levi L
my Y G x X X of p I an Hamiltonian reduction
PA T G x x G X of X X t g 2 x Igt kaPx
N G x g x X p lg a xi to ab twixt

y p o P Ms on Oy
Finally take h H yn a I l le D

Then E is the open G orbit in Y this only depends on
L G and not P Y X is a g factorial
terminalization

a A XL dig 3 d

at a Y z I g a x g 2 da 2 x

rescales 3 on Oy by z z d

Guantizationoft

n Y GXP Xc log p G P
is at invariant and affine



M q Oy a sheaf of graded Poissonalgebras on
G IP

Diff A filtered quantization of Y is a quasi coherent

sheaf D on G P of A algebras with algebrafiltration
given by sheaves of Og p modules D Y D i s t

Dei Dej E Dit j d m gaD is a sheaf of
graded Poisson algebras and ge I I n Oy of
sheaves of graded Poisson algebras

Exarate Y T G p D D gyp sheaf of
linear algebraic differential operators on G IP filtered
by order of differential operator is a filteredquantization
of t G P 1 21

Temporary goal For a E l Il 1 produce a

filtered quantization D of Y by quantizing the
constitution of Y

Quantum analog of T G x Xi

Recall that 712 xp E 03
F filtered quantization A of e x

D G the algebra ofdifferential operators on G



is a filtered quantization of act G
Ms D G A is a filtered quantization of thx Xi

Classical comment map of p alt G X X
Then 415 Exo L t 10 415 degree d

left invariant

Def A associative algebra R algebraic
group acting rationally on R by algebraautomorphismA quantum co moment map is an R

equivariantlinear map of r Lie R1 A s t

of s o 3 3A t 3 E r

Examfle G A G by eight translations Ms GAD G

Then of 5 to 5 for left translations 5 rose
is the quantum comoment map

Exercise e e x ya comoment map
works for all OT Then F lie algebra home
I h ft c e d s t d Iet it c ed i

Such a I is unique if I
za

o

Finally LAA by filtered algebra automorphisms
s t I is the quantum comment map



We can view of an p l de ed
Pick A E l e e and palp charofaction of l

on Noh GIP
Define E H Sexo t t t 915 at Pop 57
which is a map p DLG All ed
The top degreepart of E is 4

Exercise Keeping the notation A R E The space

A if I let R is an associative algebra w n t

a A e b A Elm ab A 41st
This is called the quantum Hamiltonian reduction

Remark If it is filtered with degree C I E d

Im E E Aed then AIA 8121 R inherits a

filtration with degree C E d

We view D G1 A as a quasi coherent sheaf on
G i via w G G p

runs D D Gl Acl Deal Ad of ipl
sheaf of filtered algebra on GIP

Fact D is a filtered quantization of y Oy
Thanks to P A p lol is free I



Exandle X N Y T G B

PG p p t Epositive roots

D D if Cd p twisted differential operators

Directly generalizes to Y T GIP

Remark d D gives a bijection
l else e I filtered quantization ofY iso

is
Hr yug e

Herod mah Bezukavnihov Kalidin

Then Period ID l X

Quantization of A a x

observe that
Iormal

proper birational

a x E a y

Proposition A P D I is a quantization of al x

Sketch of proof Need to check that

geld I ge r 0,11 ex

I
Mge Dal r Oyl



get all y

rigeloil
Fact H G p 4 0 H ly Oyl o t i so

This follows from X having rational singularities
Deauville

Hence to show that gel P ID ai P ge ID it
we'll use that Hi G P 4 0 p r

Eaton

geDa 4 0 y t We have a Sfs f i

o h Is i i Dalai 12 0 l o

p
than Ht o

H l la si I o t i

We have a Sts
O M Da i i f I ID si fly Oyl o

get Dx Plan

fxamfle X N Y T IG B1 D DEB
Thin PCDIE I U Mof Ug m which is

By B B localization a quantizationof
ax



Fact d A gives the bijection
hx Nx quantization of e x 33 iso

which is exactly the classification theorem we stated
earlier

Remarks 1 When do we have A Ay as filtered
algebras with G action

Ng Ll E G NG L A L equivariantnilpotentcovers
9

By twisting L action momentmad
to l

Ms Ng L El C Ng L stabilizer of E
W m Ng L D I L A e le g

Claim A F A as filteredalgebras withG action
I

b and d E same Ng L OT L orbit

Ingroup
Flint Both Y D depend on choice of P
runs Y D P Turns out that A doesn't defend on

P as a filtered quantization
M E NG I L Get me nPn another Parabolic with
Levi L

ynpn
i

Y Dit DI
A r Dp e r anti And



In the opposite direction let 4 A I A be afiltered

algebra isomorphism that is G equivariant
Ms get e Autge x automorphismsofgraded

Poisson algebras G equiv
mm group homomorphism

Ng L E L Ant 41 3

Fact Loser Namikawa There is a short exactsequence

L W x Ng L E L Aut 61 3 1
U

geld An

Using this construction and classical analog we get
an algebraic orbit method conjectured by Vogan

Theorem LMBM 21 G simply connected Then F a

Ejectionbetween
1 Filtered quantization of a lot A nilpotent coven

upto filteredalgebra isomorphisms
Not upto filtered quantization isomorphisms I

2 An G equivariant coven of all cot adjoint orbits

In the above bijection
Nif I in 21 to its quantization A

I the canonical quantization



Can the algebra it be describedexplicitly
G A A with quantum co moment map

of Hog Ay Sen earlier exercise1

Theorem MBM 21 MBM 211

A 0 kn Eg is maximal ideal
We can recover kin explicitly to

Also if I E of't then Ig Nog to

Harishchandra bimodule

Refn Harishchandra An Hc Ug bimodule B is a f g
Ug bimodule s t the adjoint of action is locally
finite i e s f b t B F a f d ad logl stable B C B
and b eBo
I then ad 5lb 5 b b 5 for 3 t of be B

Examfle DB Roy halted the regular bimodule is

an HC bimodule This follows by observing that
Hoy Yz 1Moyle PBW filtration

I f d s ad ogt stable

2 All sub quotients of HC bimodules an Hc

Exercise A f d of ref V Noy is an HC binod



with I v a g V a

v al f u a t u g ga

t V a fUy
s e of

a this bimodule is He
b Every HC bimodule is a quotient of V0 Uof
foe some V

G simply connected
An irreducible unitary G representation

uns HC bimodal take the subspace of algebraic
which is inducible and vector

unitarizable that is the original unitary
structure restricts to a positivedefinite one on the
bimodule

Theory Harishchandra This defines a bijection between
11 Unitary G inks
21 Irreducible unitarizable HC bimodules

Experimental evidence Unitarizable tired He bimodulu

have large intersection with Hc bimodules over

quantizationof al E



Barbasch Vogan construction andglimpsesof symplectic
duality

Ig Hoy to canonical quantizationofeggher Ig maximal ideal

Unitotentrepresentation of real semisimple grants
In orbit method

Nilpotent orbits and their covin

1985 Barbasch Vogan defined special unipotent
representations
I E Noy 2 sided ideal MD I 92 2g Ecenter

mat ideal won t E Is
aCh gW

so I m ht W

Fact This defines a bijection
max ideals ofUg I h W

Notation For de h W Imax x corresponding
maximal ideal

Echl Imax p of Uof s Imax o Ug mo

BV Collection of max ideals e subsets in h W

Letof be Langlands dual og son t of span

Let 0 E og be a nilpotent orbit runs er h fu



Can conjugate h to be inside Lu h

Def BV 85 Iq Imax Ehr
specialunipotent ideal

Theorem LMBM 211 A 0 F an Ad g equivariant
cover ofnilpotent til I OU s t Ipu KenCfg Uyl
is a canonical quantization of a lot or I

u d 100 gives an embedding
nilpotent orbits in og nilpotent coven for g

Barbasch Voganduality I EUg 2 sided ideal

runs gs I E Sog a log for the PBW filtration
tomogenon G stable ideal

mus ge I
E g

VII associated variety
If I is maximal V I is the closure of a single

nilpotent orbit

Eg If I Ken Ig Not AI quantizationof at
then V I Oi where E is a cover of 0

Df BV 85 Bu dual d o of 0 Gog is then an



orbit in V Ior
runs d nilpotent orbits in of

nilpotent orbits in of
im d special nilpotent orbits

Tgif ti o to Imax o Imax
d Ou principal nilpotent orbit I

OV principal nilpotent orbit in of
Then it's possible to choose h 2p E h

Ig Imax p ofUg V Ig 03

of Sl n of
Given a partition N n us On nilpotent orbit

withJordantypeN
Thin d Opl Opt
of spy Then of so spy

V

it2 I I 7
g

2,2

2 1 1 Not special
14 o

Construction of d I Ou should be a cover of d Ou
Case 1 Q a proper Levi subalgebraofof 4 distinguished



2g er hi f is finite
Then I 104 universal Adlog equivariant cover of
d Ou

General case Pick minimal Levi l c of containing e
Acog Oi L e m di Oj

Ms X spec a lot 10513 P L X U

Y G x P X X log p
I 0 I open G orbit in Y

Examfle of sin I Ou d o

of spy I 12 l il 1 orbit 2 21
2 21 to double cover

probablyI

SeccDality
Braden Licata Proudfoot
Web

of ionical symplectic singularities with some decoration
X usXV

The duality swaps some invariants

X Spec a I OU
X M n su

dinge



Pair of invariants
X thx tx lie algebra of max torus in

graded Poisson auto of ex
Expectation hav tx and tx r hx

17 0621

HCBimodule

A gradedPoisson algebra A o Vico and Are
A

filteredjuantization
of A

Deft Let B be an A bimodule
1 A good filtration on B is B zBsj s t

Lectorspace
7 Bj 03 for jaco
ii Bimodulefiltration As iBej Bej its i E Biti
I ge B is an A bimodal
ai Aei Be j E B it j d dig d

left and right A actions on B coincide so

ge B is an A module
iv ge B is finitely generated over A

2 We say B is HC if it admits a good filtration



Example i A the regular bimodule is tic
with good filtration given by the quantization
filtration

21 Subquotients of HC bimodules are HC

Remarks 1 Good filtration aren't unique However

if B Y Bej Y B'sj are both good filtrations
then F m M E Z S t

Bejam E Bij E Bejam F j EZ
Exes

2 When A Nog this def ofHC is equivalent to the
one stated earlier

He bimodules over quantization of a LA Al

A filtered quantization quantum comomentmap
I Ug A

M Every A bimodule becomes a Noy bimodule

Luna If B is an HC A bimodule it is also Hc as
a Voy bimodule

Proof I og E Aed É II log Be E Be j
Since ge B is finitely generated over A and A is



positively graded geB j are finite dimensional

1
Bej are finite dimensional Kj

So t b E B can be included into f d adlog stable

subspace
It remains to see that B is f g one Voy
Now ge B is f g over A B is f g as a left

A module

LOT is finite generated over Stoy A is finitely
generated left module over Uop B is finitely generated

over Voy

Classificationeapplicationand generalization

classification result Let X be conical singular symplectic
A a x A filtered quantization
vs HC A full subcategory of Binod A whose

object an Hc
Remark Every f d bimodule is Hc

Hence classifying all Hc bimodules should be
intractable

let BE HC A pickgood filtration runs ge B
Ms Supp ge B subvariety in X defined by Annagab



Exam By an earlier remark show that SuppIge B is

independent of the good filtration
Hence we can simply call in Supp I B
Harden I left annihilator of B E A Then

Supp A I Supp B

Hint A I A B an A in A I EndgIB
has a goodfiltration
induced by that on B

and Supp Endsof IBI ESupp B

If it is simple Supp Bl x for B 0

Diff The category of HC bimodulis with full support
is the Sun quotient

HI A HC A B Supp B G x
It turns out that Ic A Rep finite group1
as symmetric monoidal I t

categories f
ITah ng e algebraic

controls finite e'tale covers of X's fundamental group

Tah XM Gim ti XM finite index normal subgroup
Fact Namikawal Hats xn is finite and thus equal to
the maximal finite quotient of it 1 7

Exankle 11 G simply connected semisimple



G H Then Tib E H Ho IT d

2 X V T R E sp VI is finite
Symplectic vectorspace

Then TM XM ti x2 P

This is because X M Effy r

V Yinsymplectic subspaces t simply
connected

Forgeneral X let 1 tag xng

clanificationtheoren Loser 18 HC A I Rep Mra
I o f under minor restriction on X one can

compute if from the quantizationparameter de by

Example A it canonical quantization
the cone I of xnot corresponding to Pa O f is as follows

I She a E3 is a ramified come of X
Recall Li all codimension 2 symplectin leaves ofX

my X XM W É Li
open with codim X X 24

K is maximal s t I x is unramified over X

Let P P MA Ms r AI It x



I is conical singular symplectic as canonical

A a r and I e Ao quantization

T E Rep P runs Be T tf
HC bimodal fi A o bimodule

t Ba is the map Rep M HT to

Application Unitotent HC Mog bimodules

In orbitmethod
Nilpotent orbits and covers

Thioundif h LMBM 21 MBM 21 For a nilpotent cone
I and its canonical quantization A o is a s s Mog

bimodal The simple constituents are unifotent He
bimodules associated to 8

Can Describe kennelsof Koy to Ci e compute

corresponding elements of h W

Classify unipotent bimodal corresponding to 0

Imf of finite group
Most of these bimodules are unitarizable

Techniques involved in theproof of the classification
theorem

step 1 Produce full monoidal embedding



HI A Rep IM
ms F I o f s t image Ref r rat

What does this embedding do on objects
Let B E HC A and tick a good filtration

Mrs ge B E A mod

ge B comes with 3 A x B B

a t As i i b t Be j E la b Beingd
So ge B becomes a f g Poisson A module

Ms Ige B lying Poissoncoherent sheaf on M

smooth Symflectin

Fact F Ding module structure on a Poisson Oxrig
module lifting the O module structure when

f E Dang If E Oxng acts by t 3 coming
from the Poisson module structure

gr B lying is an O
cohyentD

moduls

vector bundle with flat connection
Rick x e XM me monodromy representation

T XM x1 A Ige B x

factors through M itah xn ti xm because

I is the maximal finite quotient



So once we pick a good filtration for B we get a
a f ref on ge B x This is exactly thedescription
of the functor above on the level of objects

Stef 2 How to determine I
A vs restrict to xn to get a micro local sheaf
of filtered algebras on XM's denoted by AN

V E Rep P m vector bundle with flat connection on
XM that uniquely quantize to a sheaf of A M
bimodules Bit

lies in the image of HCCal A Bit microlocalisation

of an HC A bimodal a Bit extends to X
It may happen that Big doesn't extend even that

P Big 0 Equivalently thepushforward of Bit
to Xmay not be coherent

X XM 1 It Li L XM x

If i Bit is coherent P Bit is therequired
extension Checking that Bit extends nicely to Li
reduces to a question about the transverse slice Ei
to Li where E i is a neighbourhood of o in 04Mi
d parameter of it in h QI h j with



hi hi hey ti hi componentof d

Ms The quantization Ai of a tar with parameter

ti
Pi P via Ei co X mis E it o Xu
Mrs di Mi Tim E igo yah x ng P

Observation Bih extends nicely to Lie 9 V
A
Im tic till

This can be described as long as Mi is not Eg

Eg is the only non solvable Kleinian group

Generalization Guantizing singular Zageangians
X conical symplectic singularity A conical singular
Lagrangian in X is Y E X s t

o y is closed and ex stake
1 Y n XM is Lagrangian half dimensional

WMlyn ng 0

2 A leaver L C X Y n L is isotope in L
3 YAM Y

Favorabletrophy that we'll assume on Y

I I codim YAY 2 2 Y is irreducible



Example X x x oh xoth X with mutt

diag by 1

Thin Xdiag is singular Lagrangian satisfying M

Question quantize Y with additional structure

If I hold the addition structure is a twisted local

system vector bundle with twisted flatconnection
on yMg

The result of quantization is an A module M s t

supp IMl Y and ge M pug chosen twisted local

system
This classification question should reduce under

to the case when dim 1 1 4 and dim Y 2

Using this Loser and Shilin Yu have classified ined
He Coy K modules with full support over quantization

of Q Q s t coding I 1 10 24


