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Pigeonhole Principle

Pallav Goyal

. In a tournament between n teams where each team plays every other team exactly once,

resulting in either a win or a loss, show that if each team wins at least once, there exist two
teams that have exactly the same number of wins.

. Prove that in a group of 6 people, there always exist 3 mutual acquaintances or 3 mutual

strangers.

. If 10 points are chosen at random in the interior of an equilateral triangle with side length 3,

prove that there exists a pair of points that are at distance at most 1 from each other.

. Given 5 lattice points in the plane, show that there exists a pair of points whose mid-point is

also a lattice point.

. Consider a subset A of the set {1,2,...2n} of size n + 1.

e Prove that there exists a relatively prime pair in A.

e Prove there exists a factor-multiple pair in A.

. Given a sequence of integers a1, as, ..., a,, prove that there exist a subsequence of consecutive
l
integers agi1,akyo,...,q; such that > a; is divisible by n.
i=k+1

Show that, given a 7-digit number, you can cross out some digits at the beginning and at the
end such that the remaining number is divisible by 7.

. Consider any natural number n that is co-prime to 10. Show that there exists a number in

the sequence 1,11,111,1111,11111, ... which is divisible by n.

. Let n > 3 be an odd number. Show that at least one number in the set {2! — 1,22 —

1,---,2" 1 —1} is divisible by n.

(Dutch Mathematics Olympiad) A set S of positive integers is called square-free if for all
distinct a, b € S we have that the product ab is not a square. What is the maximum cardinality
of a square free subset S C {1,2,3,...,25}7

Prove that ever set of of 10 distinct integers between 1 and 100 contains two non-empty
disjoint subsets such that their sum is equal.

Given any 3 distinct integers, there exists a pair x and y such that F(x,y) = 23y — 21® is
divisible by 30.
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How many (a) bishops (b) rooks (c) knights (d) kings (e) queens can one put on an 8 x 8
chessboard such that no two can hit each other?

Given an 8 x 8 chessboard with 33 rooks placed, show that 5 can be chosen that do no hit
each other.

A team played 20 games over a period of 15 says such that at least one game was played
every day. Show that there was a period of consecutive days during which exactly 9 games
were played.

(Dirichlet’s Approximation Theorem) Show that for any irrational x € R and positive integer
n, there exists a rational number £ with 1 < ¢ < n such that |z — 2| < niq.

Every point in the plane is colored either red, green, or blue. Prove that there exists a
rectangle in the plane such that all four of its vertices are the same color.

Show that in any given set A of 13 distinct real numbers, there are at least two numbers z
and y such that

0< =Y <93
142y

Given a sequence of mn+ 1 distinct real numbers, prove that there either exists an increasing
subsequence of length n 4+ 1 or a decreasing sequence of length m + 1. Check that the result
isn’t true if mn + 1 is replaced by mn.

We have mn people standing in an m X n array such that their heights are non-decreasing in
each row from left to right. Now, suppose the people in every column shuffle their order such
that their heights are non-decreasing from front to back. Show that in the new arrangement
of people, heights are still non-decreasing in each row from left to right.

(INMO 2011) Suppose five of the nine vertices of a regular nine-sided polygon are arbitrarily
chosen. Show that one can select four among these five such that they are the vertices of a
trapezium.

(Dutch Mathematical Olympiad) Suppose that S is a subset of {1,2,3,...,30} with at least
11 elements. Show that one can choose a nonempty subset T of S such that the product of
all elements of T is a square.

A binary word of length n is a sequence of 0’s and 1’s of length n. The set {0,1}" is the set
of all binary words of length n. Let S be a subset of {0,1}" with the following property: for
every pair of distinct elements z = z1x2 -z, and ¥y = y1y2 - - - ¥, we have that z and y differ
in at least 3 positions. Show that S has at most nz—:l elements.

(IMO 1987) Let z1, w2, ..., ¥, be real numbers satisfying 22 + 23 + --- + 22 = 1. Prove that
for every integer k > 2 there are integers aj,as,...,ay, not all 0, such that |a;| < k — 1 for

all 7 and
(k—1)yn

jaras + agws + -+ ana| < o



