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ABSTRACT

Losev introduced the scheme X of almost commuting elements (i.e., elements commuting

upto a rank one element) of g = sp(V ) for a symplectic vector space V and discussed its

algebro-geometric properties. We construct a Lagrangian subscheme Xnil of X and show

that it is a complete intersection of dimension dim(g)+ 1
2dim(V ) and compute its irreducible

components.

We study the quantum Hamiltonian reduction of the algebra D(g) of differential operators

on the Lie algebra g tensored with the Weyl algebra with respect to the action of the

symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain

rational Cherednik algebra of Type C. We contruct a category Cc of D-modules whose

characteristic variety is contained in Xnil and construct an exact functor from this category

to the category O of the above rational Cherednik algebra. Simple objects of the category

Cc are mirabolic analogs of Lusztig’s character sheaves.

We also define and study a group-theoretic version of Losev’s almost commuting scheme

as well as the above quantum Hamiltonian reduction problem.
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CHAPTER 1

INTRODUCTION

1.1 Main results of the thesis

Let V := C2n be a symplectic vector space and let g denote the Lie algebra sp(V ) =

sp2n. The almost commuting scheme X of g was defined by Losev in [Los21] as the closed

subscheme of g× g× V defined by the ideal I generated by the matrix entries of [x, y] + i2,

i.e., by all functions of the form (x, y, i) 7! λ([x, y]+i2) for λ ∈ g∗. Here, we use the fact that

Sym2(V ) can be identified with sp(V ) to view i2 as an element of sp(V ) (see, for example,

[CG10, Lemma 1.3.5]). The geometrical properties of X were studied by Losev who showed

that:

Theorem 1.1.1 ([Los21]). The scheme X is reduced, irreducible and a complete intersection

of dimension 2n2 + 3n = dim(g) + dim(V ).

In this work, we consider the reduced subscheme Xnil of X defined as:

Xnil := {(x, y, i) ∈ g× g× V : [x, y] + i2 = 0 and y is nilpotent}.

This definition is motivated by the notion of character sheaves, first defined by Lusztig (see

[Lus85, Lus91]). It was shown by Mirković and Vilonen [MV88] and Ginzburg [Gin89] that

over C, a character sheaf on a reductive algebraic group K can be defined as an Ad(K)-

equivariant perverse sheaf M on K, such that the corresponding characteristic variety lies in

the nilpotent locus K×N ⊆ K×k∗, where k = Lie(K) and N ⊆ k∗ ≃ k is the nilpotent cone.

Constructions analogous to Xnil were done in [GG06, FG10a, FG10b] to provide ‘mirabolic’

analogs of these character sheaves in Type A.

We describe some notation. It is known (for example, see [CM93, Theorem 5.1.3]) that

nilpotent conjugacy classes in g are parametrized by the partitions λ of 2n in which every
1



odd part appears an even number of times. Let Pn be the set of all such partitions and let

Pn denote the subset of those partitions in Pn in which all the parts are even. For each

λ ∈ Pn, let Nλ denote the corresponding nilpotent conjugacy class in g. Define for each

λ ∈ Pn:

Xλ := {(x, y, i) ∈ Xnil : y ∈ Nλ}.

Let Xλ denote the closure of Xλ in Xnil.

Note that we can identify g×g×V with T ∗(g)×V using the trace form on g. This gives

g× g× V a natural symplectic structure. Our first main result reads:

Theorem 1.1.2. 1. The scheme Xnil is a complete intersection in g×g×V of dimension

2n2+2n. The irreducible components of Xnil are exactly given by the Xλ for λ ∈ Pn.

2. With the standard symplectic structure, Xnil is a Lagrangian subscheme of g× g× V .

A similar Lagrangian subscheme was constructed in [GG06] in the context of the almost

commuting scheme of the Lie algebra gln. Using Theorem 1.1.2, we provide an independent

proof of Theorem 1.1.1 in the style of [GG06], that eliminates the use of results from [Los06].

Furthermore, the schemeXnil will be used in §4.2.4 to provide a mirabolic analog of Lusztig’s

character sheaves in Type C.

We next discuss some Hamiltonian reduction problems arising in the context of the

scheme X and some other related schemes. For this, we define the following subschemes of

g × g = Spec(C[g × g]) = Spec(C[x, y]). Consider the commuting scheme C which is the

(not necessarily reduced) subscheme of g× g defined by the ideal of C[x, y] generated by the

matrix entries of the commutator [x, y]. Next, define the scheme A to be the (not necessarily

reduced) subscheme of g× g defined by the ideal of C[x, y] generated by all the 2× 2 minors

of the commutator [x, y].

Note that the set of C-points of the underlying reduced subscheme of C consists of pairs

of elements of g that commute with each other, whereas that of A consists of pairs of elements
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of g whose commutator has rank lesser than or equal to one. The commuting scheme C is

of wide interest, and its geometrical properties (most notably, its reducedness) are largely

unknown. It is known that C is irreducible (see [Ric79]).

The schemes X,C and A have an action of the symplectic group G = Sp(V ) obtained by

the adjoint action on g and the natural action on V . Hence, we can consider the respective

categorical quotients of these schemes by the action of G. While it isn’t known if C is

reduced, it was shown in [Los21] that there’s an isomorphism:

C//G −! X//G,

which, paired with Theorem 1.1.1, implies that C//G is reduced. (That C//G is reduced

was deduced independently in [CN21] slightly earlier, by proving a version of the Chevalley

restriction theorem for the commuting scheme of g.) We extend this isomorphism to show

that C//G ≃ X//G ≃ A//G. In fact, we prove the following stronger result:

Theorem 1.1.3. We have an isomorphism of schemes:

X//{±1} −! A//{±1} = A,

where {±1} ⊆ G is the center of the symplectic group. In particular, the scheme A is reduced.

An analog of the isomorphism X//G ≃ A//G for the Lie algebra gln was proved in

[GG06]. The theorem is deduced from a linear algebraic lemma (Lemma 4.1.4), which

also implies an algebro-geometric analog of the ‘shifting trick’ in the theory of Hamiltonian

reduction, that is well-known in the differential-geometric setting (see [GS82], [CS91]).

The above categorical quotients can (and will) all be viewed as classical Hamiltonian

reductions of certain schemes under the action of the group G:

• The scheme X//G is the reduction of the scheme g× g× V with respect to G at 0.

3



• The scheme C//G is the reduction of the scheme g× g with respect to G at 0.

• The scheme A//G is the reduction of the scheme g×g with respect to G at the closure

of the orbit of rank 1 matrices in g ≃ g∗.

So, we can try to study the non-commutative or quantum analogs of these reduction

problems. For this, let Ug denote the universal enveloping algebra of g, let D(g) denote the

algebra of polynomial differential operators on g and let W2n denote the Weyl algebra on

2n variables, which is the algebra of polynomial differential operators on the affine n-space.

Then, D(g) is a quantization of C[g×g] ≃ C[g×g∗], whereas W2n is a quantization of C[V ].

Both the algebras D(g) and W2n have a natural g-action (and, thus, so does their tensor

product.) So, we get quantum co-moment maps:

Θ0 : Ug −! D(g),

Θ2 : Ug −! D(g)⊗W2n.

(These maps are elaborated upon in §4.2.1.) Then, we can consider the following non-

commutative algebras:

• The reduction
(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

)g
of D(g)⊗W2n at the augmen-

tation ideal of Ug.

• The reduction
(
D(g)/D(g) ·Θ0(g)

)g
of D(g) at the augmentation ideal of Ug.

• The reduction
(
D(g)/D(g) · Θ0(K)

)g
of D(g) at the unique primitive ideal K ⊆ Ug

such that gr(K) ⊆ C[g∗] is the defining ideal of the orbit of rank 1 matrices.

(Each of these algebras is discussed in detail in §4.2.1.) The algebra
(
D(g)/D(g) · Θ0(g)

)g
has been studied classically by Harish-Chandra (see [HC64]) who constructed a surjective

4



algebra homorphism called the ‘radial parts’ homomorphism:

D(g)g −! D(h)W ,

where h is a Cartan subalgebra of g and W is the Weyl group. The kernel of this homo-

morphism was shown to be precisely (D(g) · Θ0(g))
g in the works of Wallach [Wal93] and

Lavasseur and Stafford [LS95, LS96], implying that the algebra
(
D(g)/D(g) · Θ0(g)

)g
is

isomorphic to D(h)W .

In this work, we’ll discuss the other two quantum Hamiltonian reduction problems. For

this, we recall the rational Cherednik algebra Hc of Type C, first defined in [EG02]. Here, the

parameter c = (clong, cshort) lies in C2. Let e = 1
|W |

∑
w∈W w be the averaging idempotent

of the Weyl group W and consider the spherical subalgebra eHce ⊆ Hc of the Cherednik

algebra. (The notation is elaborated on in §2.5.)

We prove the following theorem about these algebras:

Theorem 1.1.4. We have algebra isomorphisms:

(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

)g
≃
(
D(g)/D(g) ·Θ0(K)

)g
≃ eHce,

for the parameter c = (−1/4,−1/2).

Analogs of this theorem were proved in [EG02] and [GG06] in the gln-setting. This

theorem shows that for the very special choice of the parameter c = (−1/4,−1/2), the

spherical subalgebra eHce can be obtained as a quantum Hamiltonian reduction of the ring

of differential operators on g. The proof of the first isomorphism in the theorem follows from

Lemma 4.1.4. The proof of the second isomorphism employs a generalization of the radial

parts construction studied by Etingof and Ginzburg in [EG02].

Inspired by the formalism in [GG06, §7], we define a certain category C of holonomic

(D(g) ⊗W2n)-modules supported on Xnil. The simple objects of C will be the mirabolic
5



analogs of Lusztig’s character sheaves in Type C. We construct an exact functor from C to

O(eHce), the category O of the spherical Cherednik algebra eHce defined in [BEG03a].

In the last part of this work, we study the group-theoretic analogs of the above prob-

lems. We define the group-theoretic almost commuting scheme X to be the (not necessarily

reduced) subscheme of T ∗(G)×V ≃ G×g×V defined by the ideal generated by the matrix

entries of Adg(y)− y + i2 for (g, y, i) ∈ G× g× V . Also, let Xnil be the reduced subcheme

of X obtained by stipulating that the element y is nilpotent. Then, we prove the following

theorem about these schemes:

Theorem 1.1.5. 1. The scheme X is an irreducible scheme that is a reduced, complete

intersection in G× g× V of dimension 2n2 + 3n = dim(G) + dim(V ).

2. The scheme Xnil is a Lagrangian complete intersection in G × g × V of dimension

2n2 + 2n = dim(G) + 1
2 dim(V ).

Further, we can define group-theoretic versions of the schemes C and A and consider the

classical Hamiltonian reduction problems arising in their context. We study these schemes

in §5.1 where, in particular, we prove a group-theoretic analog of Theorem 1.1.3 (see Theo-

rem 5.1.7).

Finally, we consider the quantum Hamiltonian reduction of the algebra of differential

operators D(G) on the group G. This algebra has a natural g-action, and therefore, so does

the tensor product D(G) ⊗ W2n. Hence, we get quantum co-moment maps Σ0 : Ug −!

D(G),Σ2 : Ug −! D(G)⊗W2n, and we can consider the non-commutative algebras:

• The reduction
(
(D(G) ⊗W2n)/(D(G) ⊗W2n) · Σ2(g)

)g
of D(G) ⊗W2n at the aug-

mentation ideal of Ug.

• The reduction
(
D(G)/D(G) · Σ0(g)

)g
of D(G) at the augmentation ideal of Ug.

• The reduction
(
D(G)/D(G) · Σ0(K)

)g
of D(G) at the unique primitive ideal K ⊆ Ug

such that gr(K) ⊆ C[g∗] is the defining ideal of the orbit of rank 1 matrices.
6



(The above maps and notation are elaborated upon in §5.2.) The algebra
(
D(G)/D(G) ·

Σ0(g)
)g

was considered by Harish-Chandra in [HC64] and it is known from [Wal93, LS95,

LS96] that this algebra is isomorphic to D(H)W , where H ⊆ G is a maximal torus.

We will study the other two algebras. We recall the degenerate version of Cherednik’s

double Affine Hecke algebra (see [Che05]), also known as the trigonometric Cherednik alge-

bra, of Type C, denoted by Htrig
c for a parameter c ∈ C2. As in the rational case, we can

define the spherical subalgebra eHtrig
c e ⊆ H

trig
c , where e is the averaging idempotent of the

Weyl group W . We prove that:

Theorem 1.1.6. We have algebra isomorphisms:

(
(D(G)⊗W2n)/(D(G)⊗W2n) · Σ2(g)

)g
≃
(
D(G)/D(G) · Σ0(K)

)g
≃ eH

trig
c e,

for the parameter c = (−1/4,−1/2).

1.2 Organization

Here, we give more details about the structure of this thesis.

In Chapter 2, we recall all the relevant definitions and notation from symplectic geometry

that we will be using. We also note down results about rational and trigonometric Cherednik

algebras that will be needed for our proofs.

In Chapter 3, we prove Theorem 1.1.2. The proof of the fact that Xnil is Lagrangian is

by embedding it into the Lagrangian subscheme defined in [GG06]. The proof of the rest of

the theorem will be seen to be a consequence of this fact and some elementary sl2-theory.

In Chapter 4, we study the Hamiltonian reduction problems in the Lie algebraic setting.

In §4.1, we prove Lemma 4.1.4 and use it to deduce Theorem 1.1.3. In §4.2.1, we define the

algebras alluded to in the statement of Theorem 1.1.4. In §4.2.2 and §4.2.3, we construct

maps between these algebras and prove that they are isomorphisms. Finally, in §4.2.4, we

7



note some results about the category C and provide the construction of the functor from C

to O(eHce).

In Chapter 5, we prove group theoretic versions of the theorems proved in Chapters 3

and 4. In particular, we prove Theorems 1.1.5 and 1.1.6 in §5.1 and §5.2 respectively.

We end with Appendix A where we prove that the ring of invariant polynomials C[H×h]W

is generated as a Poisson algebra by its subalgebras C[H]W and C[h]W . This is a group

theoretic version of a result in [Wal93] and is needed for the proof of Theorem 1.1.6.

8



CHAPTER 2

PRELIMINARIES

In this chapter, we develop some preliminaries. We define all the important notions, state

the known results and provide references for their proofs. We work over C throughout.

2.1 Symplectic geometry

Definition 2.1.1. A symplectic variety Y over C is one equipped with a non-degenerate

algebraic 2-form ω such that dω = 0.

Example 2.1.1. The prototypical example of a symplectic variety is the cotangent bundle

T ∗(X) of a smooth variety X. The symplectic structure on T ∗(X) is given by the 2-form

ω = dλ, where λ is the canonical 1-form on T ∗(X), also called the Liouville 1-form.

For X = Cn, we can give an explicit description of the symplectic form ω on T ∗(X) ≃

C2n. Given coordinates q1, q2, . . . , qn on Cn and dual coordinates p1, p2, . . . , pn on the cotan-

gent space, the form ω is given via the formula:

ω =
n∑
i=1

dpi ∧ dqi.

Definition 2.1.2. A commutative algebra A over C is called a Poisson algebra if there exists

a C-linear bracket {·, ·} : A× A! A such that:

1. The bracket {·, ·} gives A a Lie algebra structure.

2. The Liebniz rule is satisfied: {fg, h} = f{g, h}+ g{f, h} for all f, g, h ∈ A.

Example 2.1.2. Given a symplectic variety Y , we have a natural Poisson algebra structure

on the ring of regular functions O(Y ), which we describe here. Let ω be the symplectic form

on Y . As this form is assumed to be non-degenerate, we get a map from O(Y ) to the space

9



of vector fields on Y (i.e., derivations on O(Y )) that maps an element f ∈ O(Y ) to the

unique vector field ξf satisfying:

ω(η, ξf ) = df(η),

for all vector fields η on Y . The vector field ξf is known as the Hamiltonian vector field

associated with the function f . Then, we can define a bracket {·, ·} on O(Y ) via:

{f, g} := ω(ξf , ξg)

for any f, g ∈ O(Y ). It follows from Theorem 1.2.7 of [CG10] that this indeed gives a Poisson

algebra structure to O(Y ).

Example 2.1.3. Another important example of Poisson algebras arises in the context of

‘almost commutative’ algebras. Let A be an associative (not necessarily commutative) al-

gebra over C that has an increasing filtration {Ai}i∈N. We define the associated graded

algebra of A with respect to this filtration via gr(A) := ⊕i∈NAi/Ai−1. Then, gr(A) is an

associative algebra with a product induced by the one on A. The algebra A is said to be

almost commutative if the algebra gr(A) is commutative.

Given an almost commutative algebra A and its associated graded A = gr(A), the algebra

A has a natural Poisson structure defined as follows. Define:

{·, ·} : Ai/Ai−1 ×Aj/Aj−1 −! Ai+j−1/Ai+j−2

{ai, aj} := ãiãj − ãj ãi,

where ãk denotes some lift of ak ∈ Ak for k = i, j to A. The almost commutativity of A

implies that this bracket is well-defined and that the map doesn’t depend on the choice of

the lift. Then, it is straightforward to verify that {·, ·} indeed defines a Poisson structure on

A.

10



The most important example of a Poisson algebra that we will be dealing with lies in the

intersection of the two examples above: Let Y = T ∗(X) for some smooth affine algebraic

variety X. Then, Y is symplectic, and so by Example 2.1.2, we get a Poisson algebra

structure on the ring of regular functions O(Y ).

Next, let D(X) denote the ring of algebraic differential operators on X. This algebra

has a filtration given by the order of the differential operator, and it turns out that the

associated graded with respect to this filtration is exactly O(T ∗(X)) = O(Y ). Hence, by

Example 2.1.3, we get another Poisson algebra structure on O(Y ). Fortunately, we have the

following result:

Proposition 2.1.1. [CG10, Theorem 1.3.10] The two Poisson structures on O(Y ) described

above coincide.

Let V be a symplectic vector space and let W be a subspace of V . Let W⊥ ⊆ V denote

the annihilator of W with respect to the symplectic form on V .

Definition 2.1.3. 1. The subspace W is said to be isotropic if W ⊆ W⊥.

2. The subspace W is said to be co-isotropic if W⊥ ⊆ W .

3. The subspace W is said to be Lagrangian if W = W⊥.

These definitions can be generalized to arbitrary symplectic varieties:

Definition 2.1.4. Let M be a symplectic variety. A (possibly singular) subvariety Z of M

is said to be isotropic (resp. co-isotropic, Lagrangian) if at any point p in the smooth locus

Z, the tangent space TpZ is an isotropic (resp. co-isotropic, Lagrangian) subspace of TpM .

It is easy to see that the dimension of an isotropic subvariety Z is less than or equal to

half the dimnesion of M , that of a co-isotropic subvariety is greater than or equal to half the

dimension of M and the dimension of a Lagrangian subvariety is exactly half the dimension

of M .
11



We’ll be needing the following proposition about subvarieties of isotropic subvarieties:

Proposition 2.1.2. [CG10, Proposition 1.3.30] Let M be a symplectic variety and let Z be

an isotropic subvariety. Then, any subvariety of Z is itself isotropic.

2.2 Hamiltonian reduction

Let M be a symplectic variety with symplectic form ω. Suppose a reductive algebraic group

G acts on M while preserving the symplectic form, that is, ω(x, y) = ω(gx, gy) for all

x, y ∈ TmM and g ∈ G for any point m ∈M . The infinitesimal group action gives rise to a

Lie algebra homomorphism ϕ from the Lie algebra g := Lie(G) to the space of vector fields

on M .

Definition 2.2.1. 1. The G-action on M is said to be Hamiltonian if there exists a G-

equivariant map µ : M ! g∗ such that the pullback map µ∗ : g ! O(M) satisfies

ξµ∗(x) = ϕ(x) for all x ∈ g.

2. The maps µ and µ∗ in the above situation are known as the moment and the co-moment

maps respectively for the G-action on M .

The fact that ϕ is a Lie algebra homomorphism implies that µ∗ is a Lie algebra homo-

morphism, where the Lie algebra structure on O(M) is given by the Poisson bracket.

Example 2.2.1. Suppose a group G acts on a variety X. Then, the induced G-action on the

symplectic variety T ∗(X) is always Hamiltonian whose co-moment map can be described as

follows: Given x ∈ g, let vx denote the vector field on T ∗(X) obtained due to the infinitesimal

G-action. Then, we have the co-moment map:

µ∗ : g −! O(T ∗(X))

x 7! λ(vx),
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where λ is the canonical 1-form on T ∗(X).

Definition 2.2.2. Let O denote a co-adjoint G-orbit in g∗. Given a Hamiltonian G-action

on a symplectic varietyM with moment map µ, we define the classical Hamiltonian reduction

of M at the orbit O to be the categorical quotient µ−1(O)//G.

We can also state an algebraic version of this definition. Given the co-moment map

µ∗ : g ! O(M), extend it multiplicatively to get a map µ∗ : Sym(g) ! O(M). Then, if I

denotes the defining ideal of O in Sym(g), the classical Hamiltonian reduction of M at O is

the variety Spec((O(M)/µ∗(I))G).

Remark 2.2.1. The motivation for Hamiltonian reduction comes from the theory of in-

tegrable systems in classical mechanics. The idea is to model the configuration space of a

given physical system as a symplectic variety, and then, use the technique of Hamiltonian

reduction to get a symplectic variety of smaller dimension, which might aid in solving the

relevant Hamilton’s equations. See [Eti09, §2] for a more detailed description of the role of

Hamiltonian reduction in classical mechanics.

Now, we generalize the above notions to the non-commutative setting. Let A be an

associative (not necessarily commutative) algebra. Suppose the Lie algebra g acts on A by

derivations, i.e., there is a Lie algebra map ϕ : g ! Der(A), where Der(A) is the space of

derivations on A.

Definition 2.2.3. 1. The g-action on A is said to be Hamiltonian if there exists a map

Θ : Ug! A such that for all x ∈ g and a ∈ A, we have the equality ϕ(x)(a) = [Θ(x), a].

2. The map Θ above is known as the quantum co-moment map for the g-action on A.

Example 2.2.2. Suppose the group G acts on a variety M and let A = D(M) denote the

algebra of differential operators on M . Then, there is a natural action of G on the algebra

A and we can describe the quantum co-moment map as follows. The infinitesimal G-action
13



results in a Lie algebra homomorphism Θ : g ! {Vector fields on M}. This gives rise to

an algebra homomorphism Θ : Ug! D(M), which is exactly the quantum co-moment map

for the above action. Furthermore, this map Θ is a quantization of the classical co-moment

map for the G-action on T ∗(M). More precisely, if µ∗ : Sym(g)! O(T ∗(M)) is the classical

co-moment map corresponding to the G-action on T ∗(M), then gr(Θ) = µ∗. (See [CG10,

§1.4] for more details.)

Next, motivated by the algebraic definition of classical Hamiltonian reduction, we define

the notion of quantum Hamiltonian reduction. Let I ⊆ Ug be a 2-sided ideal. Given a

g-action on an algebra A and the corresponding quantum co-moment map Θ, define the left

ideal K := A · Θ(I) of A. Then, it is a standard exercise to check that the ideal Kg is a

two-sided ideal of the invariant subalgebra Ag.

Definition 2.2.4. The quantum Hamiltonian reduction of the algebra A at the ideal I is

defined as the associative algebra Ag/Kg = (A/K)g.

Example 2.2.3. Considering the same situation as in the previous example, we can consider

the quantum Hamiltonian reduction of the algebra A = D(g) at the augmentation ideal

Ug+ ⊆ Ug. This is equal to the associative algebra
(
D(g)/D(g) · Θ(Ug+)

)g
. When g is

reductive, this algebra is known to be isomorphic to the algebra D(h)W , where h ⊆ g is a

Cartan subalgebra and W is the Weyl group. This is a consequence of Harish-Chandra’s

‘radial parts’ homomorphism as stated in the introduction.

This result was generalized in [EG02] and [GG06] for the Lie algebra g = gln as follows:

There exists a one-parameter family of primitive ideals Jk ⊆ Ug for k ∈ C such that

J0 = Ug+ (see [Jos74].) Then, it was shown in these papers (using the construction that

we review here in §2.4) that the quantum Hamiltonian reduction of the algebra D(g) at the

ideal Jk is isomorphic to the spherical subalgebra eHke of the rational Cherednik algebra

Hk of Type A with parameter k ∈ C.
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2.3 The symplectic Lie algebra

Let V be a symplectic vector space and let g = sp(V ) be the Lie algebra of linear endo-

morphisms of V that preserve the symplectic form. Let G = Sp(V ) denote the symplectic

group, so that g = Lie(G). In this section, we recall some explicit details about the root

system associated with the Lie algebra g and the nilpotent G-orbits in g under the adjoint

action.

2.3.1 Root system of Type C

For computations in subsequent sections, we fix some coordinates. We identify the symplectic

vector space V with the space C2n, which has the standard symplectic form given by the

following 2n× 2n skew-symmetric matrix:

 0 I

−I 0

 .

The subspace L ⊆ V = C2n, consisting of vectors whose last n coordinates are zero, is a

Lagrangian subspace of V under the above symplectic form and the dual vector space L∗

can be identified with the space of vectors whose first n coordinates are zero.

The Lie algebra sp(V ) = sp2n is the space of endomorphisms preserving this form. Then,

sp(V ) can be viewed as the subspace of gl(V ) = gl2n consisting of block matrices of the form:

A B

C D

 ,

where A = −DT , B = BT and C = CT . The subspace h consisting of diagonal matrices is

a Cartan subalgera of sp2n. Identifying h ≃ h∗ using the trace form, we fix an orthonormal

basis r1, r2, . . . , rn of h∗ given by ri = (Ei,i − Ei+n,i+n)/
√
2, where Ei,j ∈ gl2n is the
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elementary matrix whose only non-zero entry is in the ith row of the jth column and is equal

to 1.

Then, we have a choice of a root system R given by:

R :=

{
±

(ri + rj)√
2

,±
(ri − rj)√

2
,±

√
2ri : 1 ≤ i < j ≤ n

}
.

Here, the long roots are given the vectors ±
√
2ri, whereas the rest are all short roots. The set

of positive roots R+ ⊆ R is obtained by replacing all ‘±’-signs by ‘+’ in the above defintion.

Let {eα}α∈R denote the set of root vectors in h that form a Cartan-Weyl basis of the Lie

algebra g chosen so that (eα, e−α) = 1, where (., .) is the trace form. Then, we can express

the eα’s explicitly in terms of elementary matrices Ei,j as follows:

α =
(ri + rj)√

2
=⇒ eα = eT−α =

Ei,j+n + Ej,i+n√
2

α =
(ri − rj)√

2
=⇒ eα = eT−α =

Ei,j − Ej+n,i+n√
2

α =
√
2ri =⇒ eα = eT−α = Ei,i+n.

2.3.2 Nilpotent conjugacy classes

The nilpotent cone N ⊆ sp(V ) is invariant under the action of the group G and is the union

of finitely many G-orbits. More precisely:

Proposition 2.3.1. [CM93, Theorem 5.1.3] The nilpotent conjugacy classes of sp(V ) are

parametrized by the set Pn of all partitions of the integer 2n such that each odd part occurs

with even multiplicity. (Here, 2n = dim(V ).)

Given a partition λ ∈ Pn, we can construct a nilpotent conjugacy class of sp(V ) as

follows. We’ll be using the same notation as used in the previous section. For any even part
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2k that occurs in λ, we associate the 2k × 2k symplectic matrix:

I ϵ

0 −I

 ,

where I is the k × k identity and ϵ is the k × k elementary matrix Ek,k. Next, for any odd

k, to any (k, k) occurring in λ, we associate the 2k × 2k symplectic matrix:

I 0

0 −I

 .

Then, a representative in the nilpotent conjugacy class represented by the partition λ is

obtained by placing the above matrices as diagonal blocks for each part occurring in λ.

2.4 Universal Harish-Chandra homomorphism

We recall the construction of the universal Harish-Chandra homomorphism from [EG02]. In

this section, let g be an arbitrary reductive Lie algebra. Fix a Cartan subalgebra h ⊆ g and let

W be the Weyl group. Let grs denote the subset of regular semisimple elements of g and let

hreg = h∩grs. Then, hreg is the set of regular elements of h, which is equal to the complement

of the root hyperplanes. Next, inside the universal enveloping algebra Ug, consider the space

(Ug)ad(h) of ad(h)-invariants. Then, (Ug)ad(h) ·h is a two-sided ideal of the algebra (Ug)ad(h),

and so, we can define the quotient algebra (Ug)h := (Ug)ad(h)/((Ug)ad(h) · h).

By Proposition 6.1 of [EG02], and the paragraph following its proof, there exists a canon-

ical algebra isomorphism:

Ψ : D(greg)g −! (D(hreg)⊗ (Ug)h)W .

Next, fix a Ug-module V and let V⟨0⟩ denote its zero weight space. Then, by definition,
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this space V⟨0⟩ is acted upon trivially by h, and is thus stable under the action of (Ug)ad(h).

Hence, we have an action of (Ug)h on V⟨0⟩, giving an algebra homomorphism χ : (Ug)h !

EndC(V⟨0⟩). In particular, if V ⟨0⟩ is one-dimensional, we get a homomorphism χ : (Ug)h !

C. So, we can compose it with the above algebra isomorphism and restrict the map to

D(g)g ⊆ D(greg)g to get a map:

ΨV := χ ◦Ψ : D(g)g −! D(hreg)W .

This is the Harish-Chandra homomorphism associated with the representation V.

Remark 2.4.1. When V is the trivial representation of g, the map ΨV is exactly the ho-

momorphism studied by Harish-Chandra in [HC64]. In particular, the image of the map ΨV

is exactly D(h)W ⊆ D(hreg)W and the kernel is equal to the ideal (D(g) · ad(g))g ⊆ D(g)g.

Let Ann(V) ⊆ Ug be the annihilator of the representation V and consider the ideal (D(g)·

ad(Ann(V)))g, which is a two-sided ideal inside D(g)g. Then, it follows from definitions and

the proof of [EG02, Proposition 6.1] that the kernel of the homomorphism ΨV contains the

ideal (D(g) · ad(Ann(V)))g.

There also exists a group-theoretic version of the ‘universal’ Harish-Chandra homomor-

phism. For this, let G be an algebraic group corresponding to the reductive Lie algebra g

and fix a maximal torus H ⊆ G such that Lie(H) = h. Let Greg ⊆ G denote the regular,

semisimple locus inside G and let Hreg = Greg∩H. Then, we have the following proposition

about the differential operators on Greg and Hreg:

Proposition 2.4.2. There exists a cononical algebra isomorphism:

D(Greg)g −! (D(Hreg)⊗ (Ug)h)W .

The proof of this proposition is obtained by mimicking the proof of Proposition 6.1
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of [EG02] line-by-line. With this, we can repeat the construction above so that for ev-

ery representation V of g having a one-dimensional zero weight space, we get an algebra

homomorphism:

Ψ
trig
V : D(G)g −! D(Hreg)W ,

such that the ideal (D(g) ·ad(Ann(V)))g lies in the kernel of ΨtrigV . (The reason for the ‘trig’

superscript will become clear in §5.2.)

2.5 Cherednik algebras of Type C

Fix a Cartan sublagebra h ⊆ g = sp(V ) and a root system R ⊆ h∗. The space h (and hence

h∗) has an action of the Weyl group W = (Z/(2))n⋊Sn. For each α ∈ R, let sα ∈ W denote

the reflection of h relative to the root α. Fix a W -invariant function c : R ! C. For root

systems of Type C, there are exactly two W -orbits in R given by the set of all long roots

and the set of all short roots. Hence, such a W -invariant function c can be viewed as a pair

of complex numbers c = (clong, cshort) ∈ C2.

We recall from [EG02] the definition of the rational Cherednik algebra Hc of Type C,

which is the one generated by the algebras Sym(h),C[h](≃ Sym(h∗)) and the group algebra

C[W ] with defining relations given by:

wxw−1 = w(x), wyw−1 = w(y),

[y, x] = ⟨x, y⟩ − 1

2

∑
α∈R

c(α)⟨α, y⟩⟨x, α∨⟩ · sα,

for all w ∈ W , x ∈ h∗ and y ∈ h. This algebra arises as a rational degeneration of the double

affine Hecke algebra introduced and studied by Cherednik in [Che05].

Let e = 1
|W |

∑
w∈W w be the averaging idempotent in C[W ]. Then, we can consider the

spherical subalgebra eHce ⊆ Hc, which will be our main object of interest. Next, we recall
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another description of the algebra eHce given in [EG02]. Define the rational Calogero-Moser

operator Lc (also known as the Olshanetsky-Perelomov operator), which is a differential

operator on the space hreg, as follows (see [OP83]):

Lc := ∆h −
1

2

∑
α∈R

c(α)(c(α) + 1)

α2
· (α, α),

where ∆h is the Laplacian operator on the Cartan subalgebra h. Let D(hreg)− denote the

subalgebra of D(hreg) spanned by differential operators D ∈ D(hreg) such that degree(D)+

order(D) ≤ 0. Let Cc denote the centralizer of the operator Lc in D(hreg)W− . Finally,

consider the subalgebra Bc of D(hreg) generated by Cc and C[h]W , the algebra of W -invariant

polynomial functions on h.

Theorem 2.5.1. [EG02, Proposition 4.9] We have an embedding (known as the Dunkl em-

bedding) Θ : eHce ↪! D(hreg)W such that Θ(C[h]W ) = C[h]W and Θ(Sym(h)W ) = Cc.

Moreover, Θ(∆h) = Lc. Furthermore, Θ induces an isomorphism of algebras eHce ≃ Bc.

We give a description of the map Θ: We first describe the construction of a map Θ̃ : Hc !

D(hreg)#C[W ]. Consider the subalgebra S of Hc generated by the subalgebras Sym(h) and

C[W ] and let triv denote the trivial representation of the algebra S. Then, we have the

induced Hc-module IndHc
S (triv) and it can be shown that the underlying vector space of

this module can be identified with the space C[h]. Then, the map Θ̃ is defined via the action

of the algebra Hc on this module. We can describe this action explicitly via:

w 7! w, x 7! x

y 7! Dy :=
∂

∂y
+

1

2

∑
α∈R

cα · ⟨α, y⟩
α

· (sα − 1),

for all w ∈ W , x ∈ h∗ and y ∈ h. The differential operators Dy are known as the Dunkl

operators, first defined in [Dun89]. Then, the map Θ is obtained by conjugating the map Θ̃
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by the element δc =
∏
α∈R α

cα/2 and restricting it to the spherical subalgebra eHce ⊆ Hc.

(See [EG02, §4] for more details.)

The algebra Hc has a filtration such that all the elements of W and the generators of

Sym(h∗) have degree zero, and the generators of Sym(h) have degree one. This induces a

filtration on the spherical subalgebra eHce. The algebra D(hreg) has a filtration given by

the order of differential operators. Then, we have the following PBW theorem for Cherednik

algebras:

Proposition 2.5.2. [EG02, Corollary 4.4, Proposition 4.9] We have an isomorphism of

vector spaces:

Hc ≃ C[h]⊗ C[h∗]⊗ C[W ].

Furthermore, with the filtration defined above, we have an isomorphism of commutative al-

gebras:

gr(eHce) ≃ C[h× h]W .

Moreover, under this isomorphism, the associated graded version of the Dunkl embedding

gr(Θ) : C[h × h]W ≃ gr(eHce) ! gr(D(hreg)) = C[hreg × h∗]W is exactly the algebra

homomorhpism induced by the natural embedding hreg ↪! h.

The rational Cherednik algebraHc has a very rich representation theory (see, for example,

the works of Berest, Etingof and Ginzburg [BEG03a, BEG03b] and Ginzburg, Guay, Opdam

and Rouquier [GGOR03].) By [EG02, Theorem 1.7], the algebra Hc is Morita equivalent to

the subalgebra eHce, and so, the representation theories of these two algebras coincide.

Because of the PBW theorem above, we can consider a Category O of Hc-representations

in analogy with the Category O of a semisimple Lie algebra g defined by [BGfGf76]: We

define the Category O associated with the Cherednik algebra Hc to be the full subcategory

of Hc-mod consisting of all finitely generated Hc-modules having a locally finite action of

the subalgebra Sym(h) ⊆ Hc. Then, just like the [BGfGf76] case, the category O breaks
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down into a direct sum of blocks (see [Dix96]):

O =
⊕

λ∈h∗//W
Oλ(Hc).

Here, Oλ(Hc) is the full subcategory of O consisting of modules M such that for any P ∈

Sym(h)W , the action of P −P (λ) on M is locally nilpotent. We’ll be interested in the block

O0(Hc) corresponding to λ = 0, which we will refer to as simply O(Hc) by abuse of notation.

2.5.1 Trigonometric Cherednik algebras

Keeping the notation from the previous section, fix a maximal torus H ⊆ G = Sp(V ) such

that Lie(H) = h. Having fixed a root system R, let Q denote the root lattice and let P

denote the weight lattice. The Weyl group has an action on both of these lattices, and we

define the extended affine Weyl group W e := P ⋊W . Then, we have that the group algebra

C[W e] is isomorphic to the algebra C[H]⋊C[W ]. Let C denote the fundamental alcove for

the action of the Weyl group, i.e.:

C := {λ ∈ h : λ(α) > 0 for all simple roots α}.

Let Ω = {w ∈ W e : w(C) = C}.

We recall from [Che05, Opd00] the definition of the trigonometric Cherednik algebra

H
trig
c of Type C, as the one generated by the algebra Sym(h) and the group algebra C[W e]

with defining relations given by:

sα · y − sα(y) · w = −cα⟨α, y⟩,

π · y = π(y) · π,
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for all α ∈ R, y ∈ h and π ∈ Ω. The algebra Htrig
c , also known as the degenerate double

affine Hecke algebra, arises at an intermediate stage as the double affine Hecke algebra Hc

degenerates to the rational Cherednik algebra Hc. That is, the algebra Hc contains the

group algebras of the groups P and P∨ (the dual weight lattice) as subalgebras and the

algebra H
trig
c is effectively obtained from Hc by replacing the subalgebra C[P∨] by the

algebra Sym(h). If the subalgebra C[P ] is replaced by the algebra Sym(h∗) too, we obtain

the rational Cherednik algebra Hc.

Let e = 1
|W |

∑
w∈W w be the averaging idempotent in H

trig
c and let eHtrig

c e denote the

spherical subalgebra. As in the rational case, we have an embedding of the algebra eHtrig
c e

in the algebra of differential operators D(Hreg). To see this, we recall the trigonometric

Calogero-Moser operator Ltrigc on the space Hreg, which is defined as follows (see [Sut71]):

L
trig
c := ∆H − 1

2

∑
α∈R

c(α)(c(α) + 1)

sin2(α)
· (α, α),

where ∆H is the Laplacian operator on the group H. Next, as in the rational case, we can

define the trigonometric Dunkl-Heckman operators (see [Hec97]):

D
trig
y :=

∂

∂y
+

1

2

∑
α∈R

cα · ⟨α, y⟩
1− e−α

· (sα − 1),

for a given y ∈ h. Let S denote the subalgebra of D(Hreg) generated the operators Dtrig
y

for all y ∈ h.

Theorem 2.5.3. [Opd00, Thereom 3.7] There exists an embedding Σ : H
trig
c ↪! D(Hreg)

such that:

Σ(λ) = λ,

Σ(y) = D
trig
y

for all λ ∈ P ⊆ W e and y ∈ h. Moreover, Σ(∆H) = L
trig
c . In particular, the Dunkl-Heckman
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operators commute with each other as well as with the operator Ltrigc .

We define a filtration on Htrig
c such that all the elements of W e have degree zero, and the

generators of Sym(h) have degree one. This induces a filtration on the spherical subalgebra

eH
trig
c e. The algebra D(Hreg) has a filtration given by the order of differential operators.

Then, we have the following theorem:

Proposition 2.5.4. [Eti17, Theorem 2.17, Theorem 2.29] We have an isomorphism of vector

spaces:

H
trig
c ≃ C[H]⊗ C[h∗]⊗ C[W ].

Furthermore, with the filtration defined above, we have an isomorphism of commutative al-

gebras:

gr(eH
trig
c e) ≃ C[H × h]W .

Moreover, under the above isomorphism, the associated graded map gr(Σ) : C[H × h]W ≃

gr(eH
trig
c e) ! gr(D(Hreg)) = C[Hreg × h]W is exactly the algebra homomorphism induced

by the natural embedding Hreg ↪! H.

We end this section with the definition of category O for the spherical subalgebra

eH
trig
c e. Note that the algebra eHtrig

c e contains a subalgebra isomorphic to Sym(h)W and

let Sym(h)W+ denote the augmentation ideal of this algebra.

Definition 2.5.1. The category O(eH
trig
c e) is defined as the full subcategory of the category

of finitely generated eH
trig
c e-modules whose objects are eH

trig
c e-modules M that have a

locally nilpotent action of the subalgebra Sym(h)W+ .
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CHAPTER 3

THE NILPOTENT SUBSCHEME OF THE ALMOST

COMMUTING SCHEME

In this chapter, we consider the reduced subscheme Xnil of the almost commuting scheme

X defined via:

Xnil := {(x, y, i) ∈ g× g× V : [x, y] + i2 = 0 and y is nilpotent}.

In §3.1, we’ll prove that this is a Lagrangian subscheme of g × g × V . We will then use

this result to provide a new proof of Theorem 1.1.1. In §3.2, we compute the irreducible

components of Xnil.

3.1 Lagrangian subscheme

To state the precise result, we first describe a symplectic structure on X := g×g×V , which

we define as ω = ω1 + ω2. Here, ω1 is the symplectic form on g× g obtained by identifying

it with T ∗(g) using the trace form on g and ω2 is the form on the symplectic vector space V .

Next, on the scheme M := gl(V )× gl(V )× V × V ∗, we have a symplectic form ω′ obtained

by identifying it with T ∗(gl(V )× V ) using the trace form on gl(V ).

Theorem 3.1.1. The scheme Xnil is a Lagrangian complete intersection in X .

Proof. The scheme Xnil is a closed subscheme of X defined using dim(g) + 1
2 dim(V ) equa-

tions. The formula [x, y]+i2 = 0 gives dim(g) of these equations, whereas the other 1
2 dim(V )

equations follow from the nilpotence condition on y. So, dim(Xnil) ≥ dim(X ) − (dim(g) +

1
2 dim(V )) = dim(g) + 1

2 dim(V ) = 1
2 dim(X ). Therefore, to prove the theorem, it suffices to
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show that Xnil is isotropic. For this, consider the embedding:

Φ : X = g× g× V −! gl(V )× gl(V )× V × V ∗ = M

(x, y, i) 7! (x, y, i1, i2),

where i1 = i/2 and i2 is the symplectic dual of i in V . (That is, i2 is the image of i in V ∗

under the identification V ≃ V ∗ using the symplectic form.)

Recall from [GG06] the scheme of almost commuting matrices M ⊆ M:

M := {(x, y, i, j) ∈ gl(V )× gl(V )× V × V ∗ : [x, y] + ij = 0}.

Also defined in [GG06] was the closed subscheme Mnil of M obtained by stipulating y to be

nilpotent. Then, under the map Φ, we have Φ(X) ⊆M and Φ(Xnil) ⊆Mnil.

We claim that with the symplectic forms ω and ω′ defined above, the map Φ is a sym-

plectic embedding. To see this, we first observe that we can express the form ω′ as a sum

ω′1 + ω′2, where ω′1 is the symplectic form on gl(V ) × gl(V ) obtained by identifying it with

T ∗(gl(V )) and ω′2 is the symplectic form on V × V ∗ obtained by identifying it with T ∗(V ).

Then, it is clear that ω1 = Φ∗(ω′1). Next, if i, j are two vectors in V , then we have:

ω′2((i1, j1), (i2, j2)) = j1(i2)− j2(i1) =
1

2
ω2(i, j)−

1

2
ω2(j, i) = ω2(i, j),

which shows that Φ preserves the symplectic structure.

By [GG06, Theorem 1.1.4], we know that that Mnil is a Lagrangian subscheme of M. In

particular, it is isotropic. Therefore, by Proposition 2.1.2, we get that Φ(Xnil) is an isotropic

subscheme of M, proving that Xnil is an isotropic subscheme of X .

Corollary 3.1.2. The scheme X is a complete intersection of dimension dim(g) + dim(V ).

Proof. The scheme Xnil is obtained from X by imposing exactly n = 1
2 dim(V ) equations,
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that come from imposing the nilpotence condition on y. Hence, as dim(Xnil) = 1
2 dim(X ) =

dim(g)+ 1
2 dim(V ), we must have that dim(X) ≤ dim(Xnil)+ 1

2 dim(V ) = dim(g)+dim(V ).

But, the scheme X is obtained from X by imposing dim(g) equations, and so, dim(X) ≥

dim(X )− dim(g) = dim(g) + dim(V ). Therefore, X is a complete intersection of dimension

dim(g) + dim(V ).

In fact, we can generalize Theorem 3.1.1 as follows. Let h ⊆ g denote a Cartan subalgebra

of g and let W be the Weyl group. Consider the composition map ϕ : g! g//G! h//W ,

where the first map is the categorical quotient map and the second one is the Chevalley

restriction isomorphism. Then, we can consider the morphism:

π : X −! h//W,

that sends a triple (x, y, i) to ϕ(y). It is clear that Xnil = π−1({0}).

Proposition 3.1.3. All the fibers of the map π are Lagrangian subschemes of X and have

dimension dim(g) + 1
2 dim(V ).

Proof. For any x ∈ h//W , we have the dimension inequality:

dim(π−1({x})) ≥ dim(X)− dim(h//W ) = dim(g) +
1

2
dim(V ) =

1

2
dim(X ).

Therefore, to show that π−1({x}) is Lagrangian, it suffices to prove that it is isotropic.

We consider the symplectic embedding Φ : X !M defined in the proof of Theorem 3.1.1.

By Corollary 2.3.4 of [GG06], the image of π−1({x}) in M lies inside a Lagrangian subscheme

of M. As a result, we conclude that the image of π−1({x}) must be an isotropic subscheme

of M, showing that π−1({x}) must itself be isotropic.

Remark 3.1.4. In fact, by adapting the proof of Proposition 2.3.2 of [GG06], we can prove

the following: Corresponding to the Hamiltonian G-action on the variety X , we get a moment
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map µ : X ! g∗ ≃ g given by the formula (x, y, i) 7! [x, y] + i2. Consider the map:

µ× π : X = g× g× V −! g× h//W,

that maps a triple (x, y, i) to the pair ([x, y] + i2, ϕ(y)). Then, this map is a flat morphism.

As a corollary of this fact, we also get that the moment map µ : X ! g if flat.

With this, we are ready to prove Losev’s theorem. Define the scheme:

Xreg := {(x, y, i) ∈ X : y is regular, semisimple}.

In other words, Xreg = π−1(hreg), where hreg is the regular semisimple locus of h. By

Lemma 2.9 of [Los21], the scheme Xreg is irreducible.

Theorem 3.1.5. 1. We have Xreg = X. In particular, the scheme X is irreducible.

2. The scheme X is a reduced, complete intersection of dimension dim(g) + dim(V ).

Proof. By Corollary 3.1.2, we already know that X is a complete intersection of dim(g) +

dim(V ). Consider the big diagonal ∆ = (h\hreg)//W , which is a closed subscheme of h//W

of codimension 1. Then, we have the equality:

X = Xreg ∪ π−1(∆).

Since dim(∆) = dim(h//W )−1 = 1
2 dim(V )−1, by Proposition 3.1.3, we have dim(π−1(∆)) ≤

dim(g) + dim(V )− 1. However, as X is a complete intersection, any irreducible component

must have dimension exactly dim(g) + dim(V ). Therefore, we conclude that Xreg must be

the only irreducible component, proving that X = Xreg.

Finally, we note that the action of the group G is generically free on Xreg, and so, X is

generically reduced. Therefore, as X is a complete intersection, it must be Cohen-Macaulay,

and thus, we conclude that X is reduced (see [CG10, Theorem 2.2.11].)
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3.2 Irreducible components of Xnil

Let Pn denote the set of all partitions of 2n where every odd part occurs an even number

of times. Let Pn ⊆ Pn be the subset of those partitions where each part is even. For any

λ ∈ Pn, let Nλ denote the corresponding nilpotent conjugacy class of g and define:

Xλ := {(x, y, i) ∈ Xnil : y ∈ Nλ}.

Then, it is clear that we have the following disjoint union:

Xnil =
∐
λ∈Pn

Xλ.

Theorem 3.2.1. 1. For each λ ∈ Pn, we have dim(Xλ) = dim(g) + 1
2 dim(V ).

2. For each λ ∈ Pn \ Pn, we have dim(Xλ) < dim(g) + 1
2 dim(V ).

As Xnil has been shown to be a complete intersection of dimension dim(g) + 1
2 dim(V ),

this theorem implies that the irreducible components ofXnil are given exactly by the closures

of those Xλ for which λ ∈ Pn, completing the proof of Theorem 1.1.2.

Proof. Let y be any nilpotent element in g. Let O denote the minimal orbit consisting of

rank one elements in g. Define the reduced schemes: (Also defined in [Los21])

Xy = {(x, i) ∈ g× V : [x, y] + i2 = 0},

Xy = {(x, z) ∈ g×O : [x, y] + z = 0},

Yy = O ∩ {[x, y] : x ∈ g}.

We have maps:

ρ1 : Xy −! Xy
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(x, i) 7! (x, i2),

and

ρ2 : Xy −! Yy

(x, z) 7! z.

The map ρ1 is finite, with either one or two points in the fiber at any point depending

on whether i2 is zero or not, respectively. The map ρ2 is an affine bundle map which has

fibers of dimension equal to dim(zg(y)). Here, zg(y) is the centralizer of y in g. Thus, we get

that dim(Xy) = dim(zg(y)) + dim(Yy). Further, if y ∈ Nλ for some λ ∈ Pn, we have that

dim(Xλ) = dim(Xy) + dim(Nλ) = dim(g) + dim(Yy). So, in order to prove the theorem,

we are required to show that dim(Yy) =
1
2 dim(V ) for λ ∈ Pn and dim(Yy) <

1
2 dim(V ) for

λ ̸∈ Pn.

For a fixed nilpotent y, by Jacobson-Morozov theorem ([CG10, Theorem 3.7.1]), we can

find an sl2-triple (e, f, h) in g with e = y. Identifying the subspace ⟨e, f, h⟩ ⊆ g with sl2,

we get an sl2-action on the vector space V by restricting the action of g. By sl2-theory, the

element h acts semisimply on V with integer eigenvalues. Let V = V− ⊕ V0 ⊕ V+ be the

decomposition of V , such that V−, V0 and V+ denote the spans of negative, zero and positive

eigenspaces of h respectively.

Now, we consider the identification of sl2-representations g = sp(V ) = Sym2(V ). By

Lemma 3.2.2 proved below, for any v ∈ V , we have:

v ∈ V+ ⇐⇒ v2 = ade(x) = ady(x) = [y, x] for some x ∈ g.

Hence, we conclude that dim(Yy) = dim(V+). As there is a one-to-one correspondence

between positive and negative eigenvectors of h, we have that dim(V−) = dim(V+), and

so, dim(Yy) ≤ 1
2 dim(V ). The equality holds exactly when V0 = 0, that is, when h has no
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zero eigenvalues. Zero eigenvalues for h occur only in irreducible representations having odd

dimension. Hence, the dimension inequality becomes an equality exactly when the space

V decomposes into a sum of irreducibles each having even dimension. However, irreducible

components of V correspond exactly to the Jordan blocks of e(= y). Therefore, the dimension

equality holds exactly when each Jordan block of y has even size, that is y ∈ Nλ for some

λ ∈ Pn, thus completing the proof.

Lemma 3.2.2. Let V be a representation of sl2(C) = ⟨e, f, h⟩. Let W = Sym2(V ) with the

action of sl2 induced from the one on V . Then, for any given v ∈ V , we have that v2 = e ·w

for some w ∈ W if and only if v lies in the span of the positive eigenspaces of h in V .

Proof. Suppose v lies in the span of the positive eigenspaces of h in V . Then, we must have

that v2 lies in the span of the positive eigenspaces of h in W , and thus, by sl2-theory, we

must have v2 = e · w for some w ∈ W .

Now, we prove the converse. Henceforth, instead of working with Sym2(V ), we will work

with W = V ⊗ V , for notational convenience. As V ⊗ V contains Sym2(V ) as a proper

subrepresentation, if v2 = e · w for some w ∈ Sym2(V ), we must have that v ⊗ v = e · w̃ for

some w̃ ∈ V ⊗ V .

Let V = ⊕iVi be the decomposition of V into a direct sum of sl2-representations. Then,

we get a corresponding decomposition v =
∑
i vi such that vi ∈ Vi for all i. Then, as

v ⊗ v = e · w, it is clear that there exist wi ∈ Vi ⊗ Vi such that vi ⊗ vi = e · wi for each i.

Therefore, without loss of generality, we can assume that V is irreducible.

Suppose dim(V ) = n + 1 for some n ∈ Z≥0. Then, there exists an h-eigenbasis

{x0, x1, . . . , xn} of V such that the actions of e and f are given by:

e · xi = xi+1, f · xj = xj−1,

for all 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n.
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Write v =
∑
i cixi for ci ∈ C. Then, we have v⊗ v =

∑
i,j cicjxi⊗ xj . Pick the smallest

k such that ck ̸= 0. Then, c2kxk ⊗ xk is the summand in v ⊗ v having the strictly smallest

eigenvalue for the h-action. Therefore, as we have that v ⊗ v = e · w for some w ∈ V ⊗ V ,

there must exist w′ ∈ V ⊗ V such that xk ⊗ xk = e · w′. Hence, without loss of generality,

we can assume that v = xk for some k.

So, we are reduced to showing that given xk ⊗ xk = e · w for some w ∈ V ⊗ V , we must

have that h acts on xk with a positive eigenvalue. For the sake of a contradiction, suppose h

acts on xk with a non-positive eigenvalue. Therefore, we must have that h acts on xk ⊗ xk

with a non-positive eigenvalue. As xk ⊗ xk = e · w, we must have that h acts on w with

a strictly negative eigenvalue. Let V ′ ⊆ V be the subspace spanned by {x0, x1, . . . , xn−1}

(that is, all but the highest weight vector). Then, we must have that w ∈ V ′⊗ V ′ ⊆ V ⊗ V .

Consider the linear function defined via:

f : V ⊗ V −! C

xi ⊗ xj 7! (−1)i.

We claim that f(e · x) = 0 for all x ∈ V ′ ⊗ V ′. To see this, we note that V ′ ⊗ V ′ is spanned

by vectors for the form xi ⊗ xj for 0 ≤ i, j ≤ n− 1. For such i and j, we have:

e · (xi ⊗ xj) = xi+1 ⊗ xj + xi ⊗ xj+i,

which makes it clear that f(e · (xi ⊗ xj)) = 0.

In particular, since w ∈ V ′ ⊗ V ′, we must have f(e · w) = 0. This implies that f(xk ⊗

xk) = 0. However, it follows from the definition of f that f(xk ⊗ xk) = (−1)k ̸= 0. This

gives a contradiction, and so, the eigenvalue corresponding to xk must have been positive,

completing the proof.
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CHAPTER 4

HAMILTONIAN REDUCTION

4.1 Classical setting

In this section, we prove the isomorphism X//{±1} ≃ A (see Theorem 4.1.3). We will first

define some notation to formulate the precise statement. All tensor products will be over C,

unless specified otherwise.

4.1.1 The defining ideal of the minimal orbit of sp(V )

Let ω denote the symplectic form on the vector space V . Owing to the natural action of G

on the vector space V that preserves ω, we get a moment map:

µ1 : V −! g∗,

that maps the element v ∈ V to v2 ∈ g ≃ g∗. Here, we use the identification Sym2(V ) = g.

We can dualize this map to get a co-moment map:

θ1 : g −! C[V ].

By [CG10, Proposition 1.4.6], we have the following formula for this co-moment map: Any

element x ∈ g maps under θ1 to the polynomial function on V given by:

v 7!
1

2
ω(x · v, v)

for all v ∈ V . In particular, the image of θ1 in C[V ] is exactly the vector space of polynomial

functions on V having degree 2. We can extend the above map multiplicatively to get a

map C[g] ≃ Sym(g) ! C[V ], which we also call θ1, whose image is exactly the subalgebra
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C[V ]even ⊆ C[V ] of polynomials that have even total degree. Define K := ker(θ1) ⊆ C[g].

We give a more explicit description of this ideal K below.

Lemma 4.1.1. Let O denote the closure of the orbit O of rank one matrices in g, such that

the scheme structure on O is given by the reduced structure on it. Then, the radical ideal in

C[g] that defines the scheme O is generated by the 2× 2 minors.

Proof. Note that O = O ∪ {0}. Consider the map:

µ1 : V −! g∗ ≃ g

v 7! v2.

The image of µ1 is exactly O. Also, the pre-image of any point in O consists of exactly

two vectors in V that are negatives of each other, whereas the pre-image of zero is the zero

vector. Therefore, we get an induced map from the categorical quotient:

µ1 : V//{±1} −! O.

By the above discussion, µ1 is a closed embedding that is a bijection on C-points. Therefore,

as the scheme O is reduced, the map µ1 is an isomorphism.

Hence, the coordinate ring C[O] of O is isomorphic to the invariant ring C[V ]{±1}. Choos-

ing coordinates p1, p2, . . . , p2n in V , this invariant ring is equal to C[p1, p2, . . . , p2n]{±1}. It

is clear that this ring is generated by the polynomials qij = pipj for 1 ≤ i, j ≤ 2n. Also, by

the second fundamental theorem ([Wey97, Theorem 2.17A]) for the group O(1) = {±1},

the relations between these generators are exactly given by Rijkl = qijqkl − qilqkj for

1 ≤ i, j, k, l ≤ 2n. Since the pullbacks of these relations Rijkl’s to the coordinate ring

of g are exactly given by the 2 × 2 minors, this shows that the defining ideal is exactly

generated by these elements.
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Corollary 4.1.2. The map θ1 induces an isomorphism of algebras:

θ1 : C[g]/K −! C[V ]{±1} = C[V ]even.

The ideal K is the defining ideal of O in C[g] and is generated by the 2× 2 minors.

4.1.2 The shifting trick and classical Hamiltonian reduction

The adjoint action of the group G = Sp(V ) on the Lie algebra g gives rise to a Hamiltonian

G-action on the symplectic variety T ∗(g). Corresponding to this action, we get a moment

map:

µ0 : T ∗(g) −! g∗.

If we identify the space g∗ with g and T ∗(g) with g×g, the map µ0 is given explicitly by the

commutator map on g. We can dualize µ0 to get a co-moment map θ0 : Sym(g)! C[T ∗(g)].

Also, we have a diagonal G-action on the space T ∗(g) × V . The moment map µ2 :

T ∗(g) × V ! g∗ for this action is equal to µ0 + µ1, whereas the co-moment map θ2 :

Sym(g) ! C[T ∗(g) × V ] ≃ C[T ∗(g)] ⊗ C[V ] is defined via θ2(x) = θ0(x) ⊗ 1 + 1 ⊗ θ1(x)

for all x ∈ g. Explicitly, the map µ2 is defined via the formula (x, y, i) 7! [x, y] + i2 (cf.

Remark 3.1.4).

Now, we can define the schemes that we’ll be dealing with:

• We define the scheme X ⊆ T ∗(g)× V as the zero fiber of the moment map µ2. More

precisely, the defining ideal I of X in C[T ∗(g) × V ] is the one generated by θ2(g) in

C[T ∗(g)× V ]. Using the formula for θ2 above, this ideal is equal to the one generated

by the matrix entries of the expression [x, y] + i2.

• We define the scheme A ⊆ T ∗(g) as the pre-image of O under the moment map µ0.

That is, the defining ideal J of A in C[T ∗(g)] is the one generated by θ0(K). By
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Corollary 4.1.2, this ideal is generated by all 2× 2 minors of the commutator [x, y] for

(x, y) ∈ g× g.

There is a projection morphism ϕ : X ! A that maps a triple (x, y, i) ∈ X to the pair

(x, y) ∈ A. Let {±1} be the center of the group G. We will show that:

Theorem 4.1.3. The induced morphism on the categorical quotients:

ϕ : X//{±1} −! A//{±1} = A,

is an isomorphism.

The proof of this theorem will be a consequence of the following linear algebraic lemma,

which will also be useful in proving Hamiltonian reduction statements in §4.2.3 and in Chap-

ter 5. The algebras in the following lemma aren’t necessarily assumed to be commutative.

Lemma 4.1.4. Let A be an associative C-algebra generated by a vector space V ⊆ A.

Suppose the linear map S : V ! V that sends v 7! −v for v ∈ V extends to an algebra

anti-automorphism S : A ! A. Let B0,B1 be C-algebras and fix algebra homomorphisms

fi : A! Bi for i = 0, 1. Suppose f1 is surjective and let I = ker(f1). Let f2 : V ! B0 ⊗B1

be the linear map defined via the formula v 7! f0(v) ⊗ 1 + 1 ⊗ f1(v). Then, there exists a

vector space isomorphism:

B0/(B0 · f0(S(I))) ≃ (B0 ⊗ B1)/((B0 ⊗ B1) · f2(V)),

induced by the linear map B0 ! B0 ⊗ B1 that sends b 7! b⊗ 1 for b ∈ B0.

Proof. We start by observing that:

B0/(B0 · f0(S(I))) ≃ B0 ⊗A (A/S(I)).
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By definition, the space B0⊗A(A/S(I)) is equal to the quotient of the algebra Bop0 ⊗(A/S(I))

by the left ideal generated by elements of the form f0(v)⊗1−1⊗v for v ∈ V . Here, we have

identified the underlying vector space of the opposite algebra Bop0 with that of the algebra

B0.

Next, we note that the map S induces an algebra anti-isomorphism:

S : A/S(I) −! A/S(S(I)) = A/I B1∼
f1

.

Hence, we can define a map:

B0 ⊗A (A/S(I)) −! (B0 ⊗ B1)/((B0 ⊗ B1) · f2(V)),

via the formula b0⊗ a 7! b0⊗S(a). The fact that S is an anti-isomorphism ensures that the

map is well-defined and gives an isomorphism between the two spaces, thus completing the

proof.

Remark 4.1.5. One can weaken the hypothesis of the lemma and assume that B0 and B1

are A-modules (rather than algebras) and prove a slightly modified statement, but we don’t

need that generality here.

Proof of Theorem 4.1.3. To prove the isomorphsim of schemes, we need to prove that their

respective coordinate rings are isomorphic. That is, we need to show that there is an iso-

morphism:

ϕ∗ : C[T ∗(g)]/J = C[A] −! C[X]{±1} =
(
C[T ∗(g)]⊗ C[V ])/I

){±1}
,

induced by the map p 7! p ⊗ 1 for p ∈ C[T ∗(g)]. As the group {±1} acts trivially on

37



C[T ∗(g)], we have the equality of algebras:

(
C[T ∗(g)]⊗ C[V ])/I

){±1}
= (C[T ∗(g)]⊗ C[V ]even)/(I

{±1}).

We apply Lemma 4.1.4 by taking A = Sym(g), V = g, B0 = C[T ∗(g)], B1 = C[V ]even and

fi = θi for i = 0, 1, 2. The ideal I = ker(f1) = ker(θ1), in this case, is equal to K, which

is S-invariant as it is generated by homogeneous polynomials of degree 2 by Corollary 4.1.2.

Then, the conclusion of Lemma 4.1.4 gives us the required isomorphism.

Remark 4.1.6. Theorem 4.1.3 is a special case of the following ‘shifting trick’, which is also

an immediate consequence of Lemma 4.1.4:

Let g be a reductive Lie algebra. Let G be the corresponding adjoint group and fix O to be

a G-orbit in g∗ under the co-adjoint action. Let Y be an affine variety with a Hamiltonian G-

action. Then, the Hamiltonian reduction of Y at the negative orbit closure −O is isomorphic

to the Hamiltonian reduction of the variety Y ×O at 0 ∈ g∗.

As a consequence of Theorem 4.1.3, we have an isomorphism of schemes X//G ≃ A//G.

Therefore, we have morphisms:

C//G
ψ
−! A//G

ϕ
 − X//G.

Set-theoretically, these morphisms are as follows: The map ψ sends a pair (x, y) of commuting

matrices to the almost commuting pair (x, y). The map ϕ sends a triple (x, y, i) to the pair

(x, y). We have shown that ϕ is an isomorphism. The morphism ψ is an isomorphism too,

because it is proven in [Los21] that we have an isomorphism C//G ! X//G, and that

morphism composed with ϕ gives ψ.

Remark 4.1.7. The fact that ψ is an isomorphism can also be proven independently by

mimicking the proof of Theorem 12.1 of [EG02], making use of Weyl’s fundamental theorem

of invariant theory for g = sp(V ).
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Combining Theorem 1.1.3 with Theorem 1.3 of [Los21], we have the following corollary:

Corollary 4.1.8. We have an algebra isomorphism:

C[h× h]W = C[(h× h)//W ]
∼
−! C[A//G] =

(
C[g× g]/J

)g
.

4.2 Quantum setting

In this section, we prove Theorem 1.1.4. The next section defines the relevant objects,

whereas the following two sections provide the proof of the theorem.

4.2.1 Definitions and statement of the main theorem

We set up some notation. Let ω denote the symplectic form on the vector space V . Let L be

a fixed Lagrangian subspace of V . Then, we define the Weyl algebra W2n as the algebra of

polynomial differential operators on L, also denoted by D(L). Explicitly, the Weyl algebra is

an associative C-algebra generated by the variables x1, x2, . . . , xn, y1, y2, . . . , yn that satisfy

the following relations:

[xi, xj ] = 0, [yi, yj ] = 0, [yi, xj ] = δi,j , 1 ≤ i, j ≤ n.

Here, the xi’s correspond to a choice of coordinates on the vector space L∗ and and the yi’s

represent the partial derivatives ∂xi ’s with respect to xi’s. We have a direct sum decomposi-

tion W2n = W2n,even⊕W2n,odd as vector spaces, where W2n,even is the space spanned by all

the monomials in the xi’s and yi’s having even total degree and W2n,odd is the space spanned

by the monomials having odd total degree. It is clear that W2n,even is a subalgebra of W2n

which is generated by all monomials of the form xixj , yiyj and xiyj + yjxi for 1 ≤ i, j ≤ n.
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Recall from §4.1 that corresponding to the G action on V , we have a co-moment map:

θ1 : g −! C[V ],

such that the image of θ1 in C[V ] is exactly the vector space of polynomial functions on V

having degree 2.

Next, we note that the algebra W2n is a quantization of C[V ]. To make this statement

precise, we define the symmetrization map, which is the following map of vector spaces:

Sym : C[V ] −! W2n

λ1λ2 · · ·λk 7!
1

k!

∑
σ∈Sk

λσ(1)λσ(2) · · ·λσ(k),

where each λi is a linear function on V . (Here, we have used that there is a canonical

isomorphism of vector spaces V ∗ ≃ L ⊕ L∗ using the symplectic form). The map Sym is a

vector space isomorphism. Note that both of these spaces have Lie algebra structures, where

the Lie bracket on C[V ] is given by the Poisson bracket and the bracket on W2n is the one

induced by the commutator of the associative product. The following lemma follows by a

straightforward computation:

Lemma 4.2.1. The restriction of the map Sym to the subspace C[V ]≤2 ⊆ C[V ] of polyno-

mials of degree lesser than or equal to two is a Lie algebra homomorphism.

Now, we define the composition:

Θ1 := Sym ◦ θ1 : g −! W2n.

Then, Θ1 is a Lie algebra homomorphism, and so it induces an algebra homomorphism

Ug ! W2n, which we also denote by Θ1. Note that the image of Θ1 lies in the even
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subalgebra W2n,even. Define K := ker(Θ1) ⊆ Ug.

Viewing the Lie algebra sp(V ) = sp2n as a subspace of gl2n, using the embedding defined

in §2.3 the map Θ1 can be written in terms of coordinates via the formula:

A B

C −AT

 7! 1

2

(
n∑

i,j=1

(2ai,jxiyj + bi,jxixj − ci,jyiyj) + Tr(A)

)
,

where A = (ai,j), B = (bi,j) and C = (ci,j).

Next, we define the action of g on the space D(g) of polynomial differential operators on

g. For this, fix x ∈ g and consider the linear map:

adx : g −! g

y 7! [x, y].

Using the identification g ≃ g∗, the assignment x 7! adx gives a Lie algebra homomorphism

g ! End(g∗), where End(g∗) denotes the space of vector space endomorphisms of g∗. Any

element in End(g∗) can be uniquely extended to a derivation on Sym(g∗) ≃ C[g] via Leibniz

rule. Since Der(C[g]) ⊆ D(g), we have constructed a map:

Θ0 : g −! D(g),

which is a Lie algebra homomorphism. Hence, this induces an algebra homomorphism Ug!

D(g), which we also denote by Θ0. Then, given x ∈ g and d ∈ D(g), the action of g on D(g)

is defined via:

x · d := [Θ0(x), d].

We now define the algebras we will be working with:

• Consider the algebra D(g) ⊗ W2n. We have the diagonal g-action on this algebra:
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Given d⊗ w ∈ D(g)⊗W2n and x ∈ g, we define the action via:

x · (d⊗ w) := [Θ0(x), d]⊗ w + d⊗ [Θ1(x), w].

Let Θ2 : g ! D(g) ⊗W2n be the Lie algebra homomorphism defined via Θ2 = Θ0 ⊗

1 + 1 ⊗ Θ1. This can be extended to get an algebra homomorphism Θ2 : Ug !

D(g) ⊗W2n, which is the co-moment map for the above action. Then, we have the

quantum Hamiltonian reduction
(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

)g
of D(g)⊗W2n

at the augmentation ideal Ug+ of Ug.

• Define J ⊆ D(g) to be the left ideal generated by the image of K ⊆ Ug under the

co-moment map Θ0, that is, J := D(g) · (Θ0(ker(Θ1))). Then, we have the algebra(
D(g)/J

)g
which is the quantum Hamiltonian reduction of the algebra D(g) at the

ideal K ⊆ Ug.

• Finally, we consider the spherical subalgebra eHce of the rational Cherednik algebra

Hc with the parameter c given by c = (clong, cshort) = (−1/4,−1/2).

Our goal is to prove Theorem 1.1.4 by constructing algebra isomorphisms:

Ψ :
(
D(g)/J

)g
−! eHce,

Φ :
(
D(g)/J

)g
−!

(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

)g
.

These isomorphisms are established in Theorems 4.2.7 and 4.2.9 respectively.

Before constructing the maps, we define some filtrations on the algebras we will be

working with. On the algebra D(g), we have an increasing filtration given by the order of

the differential operators. The associated graded with respect to this filtration is given by

gr(D(g)) ≃ C[T ∗(g)] ≃ C[g× g], identifying g∗ with g using the trace pairing. Similarly, we

have a filtration on the algebra D(h) by the order of differential operators and gr(D(h)) ≃
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C[h× h].

On the even part of the Weyl algebra W2n,even, we define a version of the Bernstein

filtration. Note that the algebra W2n,even is generated by elements of the form xixj , yiyj

and xiyj + yjxi. We define the filtration on W2n,even by placing each of these elements in

degree 1. Thus, any element which is a product of 2m of the xi’s and yi’s lies in the mth

filtered piece. Under this filtration, we have the associated graded gr(W2n,even) = C[V ]even.

Using the two filtrations above, we also get a tensor product filtration on D(g)⊗W2n,even

such that the associated graded is gr(D(g)⊗W2n,even) = C[g× g]⊗C[V ]even. Next, on the

algebra Ug, we have the PBW filtration, and so by PBW theorem, we have the associated

graded with respect to this filtration gr(Ug) ≃ Sym g.

Remark 4.2.2. Note that the g-action on each of these algebras is filtration preserving, and

so, as g is reductive, taking g-invariants commutes with taking associated graded.

Finally, the Cherednik algebra Hc has a filtration such that all the elements of W and

the generators of Sym(h∗) have degree zero, and the generators of Sym(h) have degree one.

This also induces a filtration on the spherical subalgebra eHce. By Proposition 2.5.2, we

have the associated graded gr(eHce) = C[h× h]W .

We prove a lemma that relates the ideals in the non-commutative setting with the ideals

in the commutative setting:

Lemma 4.2.3. We have an inclusion of ideals J ⊆ gr(J ), where J ⊆ C[g×g] is the defining

ideal of pairs of matrices whose commutator has rank lesser than or equal to 1.

Recall from the definitions given in §4.1.2 that the ideal J is generated by all 2×2 minors

of the commutator [x, y] for (x, y) ∈ g× g.

Proof. First, we describe the associated graded versions of the maps Θ1 and Θ0, in order

to compute gr(J ). The map Θ1 : Ug ! W2n,even ⊆ W2n was defined on g ⊆ Ug as the
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composition Sym ◦ θ1. Then, this is a filtration-preserving map, and we have:

θ1 = gr(Θ1) : Sym g = gr(Ug) −! gr(W2n,even) = C[V ]even ⊆ C[V ].

This induces a map V = Spec(C[V ]) ! Spec(Sym g)) = g∗ ≃ g that sends a vector v to

the rank one endomorphism v2 ∈ g. By Lemma 4.1.1, we know that the ideal ker(θ1) is

generated by all 2× 2 minors in the entries of g.

Next, we consider the map Θ0 : Ug! D(g). In this case, we have the associated graded

map:

θ0 = gr(Θ0) : Sym g = gr(Ug) −! gr(D(g)) = C[g× g].

This is the co-moment map for the diagonal adjoint action of G on g × g. This morphism

θ0 induces a map g × g = Spec(C[g × g]) ! Spec(Sym g) = g∗ ≃ g sending a pair (x, y) to

the commutator [x, y].

Hence, if we consider the ideal generated by the image of ker(θ1) under the map θ0, then

this is exactly generated by the 2× 2 minors of the commutator [x, y] for (x, y) ∈ g× g. But

these are exactly the generators of the ideal J , and so J = C[g × g] · θ0(ker(θ1)). Also, by

definition, J = D(g) ·Θ0(ker(Θ1)). Hence, to prove that J ⊆ gr(J ), it suffices to show that

gr(ker(Θ1)) = ker(θ1). It is clear that gr(ker(Θ1)) ⊆ ker(θ1).

To see that the inclusion is an equality, we first describe the images of the maps θ1 and

Θ1. We have that θ1(g) is exactly the space of degree 2 polynomials in C[V ], and so, Im(θ1)

is equal to the subalgebra C[V ]even of all polynomials having even total degree. Applying

the symmetrization map, we see that Im(Θ1) is exactly W2n,even. Thus, we have a short

exact sequence of filtered Ug-modules:

0 ker(Θ1) Ug W2n,even 0.

We claim that the filtrations on ker(Θ1) and W2n,even are exactly the ones induced on them
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by Ug. For ker(Θ1), this is true by definition. For W2n,even, this follows by observing that

the function Θ1 maps g ⊆ Ug to exactly the space spanned by the elements xixj , yiyj and

xiyj + yjxi. Hence, this is a strict exact sequence of filtered modules, and so, by [Sjö73,

Lemma 1], we can take the associated graded to get an exact sequence of gr(Ug) = Sym g-

modules:

0 gr(ker(Θ1)) gr(Ug) gr(W2n,even) 0

0 ker(θ1) Sym g C[V ]even 0
.

This implies that gr(ker(Θ1)) = ker(θ1), completing the proof.

Remark 4.2.4. The ideal K = ker(Θ1) is a primitive ideal of Ug and the equality of ideals

gr(ker(Θ1)) = ker(θ1) can also be seen in a more general setting in the works of Joseph, where

he constructs minimal realizations of simple Lie algebras in the Weyl algebra (see [Jos74],

[Jos76]). This ideal is often referred to as the Joseph ideal in the literature.

4.2.2 Construction of the isomorphism Ψ

In this section, we construct the isomorphism:

Ψ :
(
D(g)/J

)g
−! eHce.

For this, we recall the map Θ1 : g! W2n defined in the previous section. The Weyl alge-

bra W2n is the space of polynomial differential operators on the vector space L, and we have

fixed coordinates x1, x2, . . . , xn on L∗. Let V be the vector space spanned by all expressions

of the form (x1x2 · · ·xn)−1/2 · P , where P is a Laurent polynomial in x1, x2, . . . , xn, i.e.

P ∈ C[x±1
1 , x±1

2 , · · · , x±1
n ]. Then, the map Θ1 gives an action of g on V, where any element

f ∈ g acts on V by Θ1(f) ∈ W2n via formal differentiation of Laurent polynomials.
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Recall that the Cartan h ⊆ g is spanned by elements of the form Ei,i − En+i,n+i for

1 ≤ i ≤ n. Then, under Θ1, the image of this element is the differential operator (xiyi +

yixi)/2 = xiyi+
1
2 = xi∂xi +

1
2 . Hence, the g-action on V has a one-dimensional zero weight

space V⟨0⟩ spanned by the element (x1x2 · · ·xn)−1/2 · 1. Then, using the construction of

the radial parts homomorphism in §2.4, we get an algebra homomorphism:

Ψ : D(g)g −! D(hreg)W .

Let ∆g and ∆h be the Laplacian operators on g and h respectively. Recall from §2.5

the Caloger-Moser differential operator Lc for c = (clong, cshort) = (−1/4,−1/2) and let Cc

denote the centralizer of Lc in D(hreg)W . Also, let Sym(g) ⊆ D(g) denote the subalgebra of

differential operators on g with constant coefficients.

The computations in the following lemma are the origin of the precise value of our

parameter c:

Lemma 4.2.5. 1. We have the equality:

Ψ(∆g) = Lc.

2. The map Ψ induces an isomorphism:

Sym(g)g
∼
−! Cc.

Proof. 1. By Proposition 6.2 of [EG02], we have:

Ψ(∆g) = ∆h −
∑
α∈R

eα · e−α
α2

.

We will evaluate eα · e−α|V⟨0⟩ for the long roots and the short roots separately:
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(a) Suppose α is a long root. (For such roots, (α, α) = 2.) Hence, α =
√
2ri for some

i, where ri = (Ei,i − Ei+n,i+n)/
√
2. Then, eα = eT−α = Ei,i+n, which implies

that:

Θ1(eα · e−α) =
(xi

2) · (−∂2xi)
4

.

It is straightforward to see that this operator acts by −3
16 IdV⟨0⟩ = clong(clong +

1) IdV⟨0⟩ on the space spanned by (x1x2 · · ·xn)−1/2 · 1.

(b) Suppose α is a short root. (For such roots, (α, α) = 1.) Then, α = (ri + rj)/
√
2

or α = (ri − rj)/
√
2 for some i ̸= j. In the first case, eα = eT−α = (Ei,j+n +

Ej,i+n)/
√
2, and so:

Θ1(eα · e−α) =
(xixj) · (−∂xi∂xj )

2
.

In the second case, eα = eT−α = (Ei,j + Ej+n,i+n)/
√
2, giving that:

Θ1(eα · e−α) =
(xi∂xj ) · (xj∂xi)

2
.

Then, in either case, the differential operator acts by −1
8 IdV⟨0⟩ =

1
2cshort(cshort+

1) IdV⟨0⟩ on the space spanned by (x1x2 · · ·xn)−1/2 · 1.

Hence, we conclude that:

Ψ(∆g) = ∆h −
1

2

∑
α∈R

c(α)(c(α) + 1)

α2
· (α, α),

which is exactly the Calogero-Moser operator Lc of Type C for the parameter c.

2. This follows from the proof of Proposition 7.2 of [EG02], which works for any reductive

Lie algebra g.
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By the above lemma, we see that Cc ⊆ Im(Ψ). Next, the restriction of Ψ to C[g]g ⊆ D(g)g

is exactly the Chevalley restriction map C[g]g ! C[h]W ⊆ D(hreg), and so, C[h]W ⊆

Im(Ψ). Now, by Theorem 2.5.1, the image of the spherical subalgebra eHce under the Dunkl

homomorphism Θ : eHce! D(hreg)W is exactly the subalgebra of D(hreg)W generated by

Cc and C[h]W . Hence, we have the following corollary:

Corollary 4.2.6. We have the inclusion of algebras Θ(eHce) ⊆ Im(Ψ).

Next, let Ann(V) ⊆ Ug denote the annihilator of the representation V. Then, as re-

marked in §2.4, we have that (D(g) · ad(Ann(V)))g ⊆ ker(Ψ). Finally, we note that the

action of g on V was defined via the map Θ1, and so, ker(Θ1) ⊆ Ann(V), which implies that

J g = (D(g) ·Θ0(ker(Θ1)))
g ⊆ (D(g) · ad(Ann(V)))g.

Theorem 4.2.7. We have an isomorphism of algebras:

(
D(g)/J

)g
≃ eHce.

Proof. The proof of this theorem is based on a commutative diagram that is quite similar to

the one present in the proof of Theorem 1.3.1 of [GG06].

As noted above, we have J g ⊆ (D(g) · ad(Ann(V)))g ⊆ ker(Ψ), and so, the map Ψ can

be factored to induce an algebra hommomorphism (which we also denote by Ψ):

Ψ :
(
D(g)/J

)g
−! D(hreg).

Identifying h with h∗ using the trace form, we get an algebra isomorphism ϕ : C[h×h∗]!
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C[h× h]. Then, we have the following diagram:

C[h× h∗]W C[h× h]W
(
C[g× g]/J

)g

gr(eHce)
(
gr(D(g))/gr(J )

)g

gr(Θ(eHce)) gr
(
Ψ
(
D(g)/J

)g)
gr
(
D(g)/J

)g

∼
ϕ

∼
Cor. 4.1.8

∼Proposition 2.5.2

∼Proposition 2.5.2

Lemma 4.2.3

proj

Cor. 4.2.6 gr(Ψ)

.

(That the rightmost map in the bottom row is a surjection follows from Proposition 6.1 of

[EG02].)

This diagram commutes, and so, we get that all the arrows must be bijections. In

particular, the image of gr(Ψ) in gr(D(hreg)) = C[h× hreg] can be identified with the image

of gr(Θ). This identification can also be obtained as the associated graded of the embedding

Θ(eHce) ⊆ Im(Ψ) from Corollary 4.2.6, and so, this embedding must itself be an equality.

Hence, we can compose with Θ−1 (as Θ is injective) to get an algebra homomorphism:

Θ−1 ◦Ψ :
(
D(g)/J

)g
−! eHce.

It follows from the commutative diagram that the associated graded version of this map

gives the bijection between gr
(
(D(g)/J )g

)
and gr(eHce). Hence, the map Θ−1 ◦ Ψ itself

must be a bijection, which is exactly the claim of the theorem.

Corollary 4.2.8. 1. We have an isomorphism of commutative algebras:

gr
(
D(g)/J

)g ∼
−! gr(eHce).

2. All the maps in the above commutative diagram are isomorphisms. In particular, we

get that:
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(a) We have an isomorphism:

C[A//G] =
(
C[g× g]/J

)g
≃ gr

(
D(g)/J

)g
.

(b) We have the equality of ideals gr(J )g = Jg in the ring C[g×g]g (cf. Lemma 4.2.3).

4.2.3 Construction of the isomorphism Φ

Now, we construct an isomorphism of non-commutative algebras:

Φ :
(
D(g)/J

)g
−!

(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

)g
.

In fact, we prove the following stronger result:

Theorem 4.2.9. There is an isomorphism of vector spaces:

Φ : D(g)/J −!
(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

){±1}
.

Furthermore, the map Φ restricts to an algebra isomorphism between the respective subspaces

of g-invariants.

Proof. As the group {±1} acts trivially on the algebra D(g), we have an equality of vector

spaces:

(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

){±1}
= (D(g)⊗W2n,even)/(D(g)⊗W2n,even) ·Θ2(g).

We apply Lemma 4.1.4 taking A = Ug, V = g, B0 = D(g), B1 = W2n,even and fi = Θi for

i = 0, 1, 2. Here, the ideal I = ker(f1) = ker(Θ1) is equal to K, which is S-invariant because
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we have a commutative diagram:

Ug W2n

Ug W2n

S

Θ1

S′

Θ1

,

where the right vertical map S′ : W2n ! W2n is an algebra anti-homomorphism defined by

sending the generators x1, . . . , xn, y1, . . . , yn of W2n to ix1, . . . ixn, iy1, . . . , iyn respectively,

where i =
√
−1. Then, the conclusion from Lemma 4.1.4 gives us the required vector space

isomorphism.

Furthermore, as this isomorphism is induced by the map D(g) ! D(g) ⊗W2n given by

D 7! D⊗1 for D ∈ D(g), which is an algebra homomorphism, the restriction to g-invariants

gives an algebra isomorphism.

Corollary 4.2.10. We have isomorphisms of commutative algebras:

gr
(
D(g)/J

)g
≃ gr

(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

)g
≃
(
C[g×g×V ]/I

)g
= C[X//G].

Proof. Recall from §4.1 that we have an isomorphism of schemes ϕ : X//G ! A//G. This

gives an isomorphism between the coordinate rings:

ϕ∗ :
(
C[g× g]/J

)g
= C[A//G] −! C[X//G] =

(
C[g× g× V ]/I

)g
.

Hence, by Corollary 4.2.8, we have an isomorphism:

gr
(
D(g)/J

)g
≃ C[A//G] ≃ C[X//G]
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Then, we can consider the commutative diagram:

(
C[g× g]/J

)g (
C[g× g× V ]/I

)g

gr
(
D(g)/J

)g
gr
(
(D(g)⊗W2n)/(D(g)⊗W2n) ·Θ2(g)

)g
ϕ∗

∼

proj

gr(Φ)

proj ,

In this diagram, the top and the left maps are already known to be bijective. We have

now shown that Φ is bijective too. Also, it’s clear by unwrapping the defintions that Φ is a

filtration preserving map, and so is its inverse. Therefore, we conclude that gr(Φ) must also

be a bijection. This forces the fourth map in the commutative diagram to be a bijection.

4.2.4 Quantum Hamiltonian reduction functor

Let (D(g) ⊗ W2n)-mod denote the category of finitely generated (D(g) ⊗ W2n)-modules.

The algebra D(g) ⊗ W2n contains the subalgebra Z = Sym(g)g of invariant differential

operators on g with constant coefficients. Let Z+ ⊆ Z be the augmentation ideal, consisting

of differential operators with zero constant term.

Furthermore, we have the algebra homomorphism Θ2 : Ug ! D(g) ⊗ W2n. Also, let

eu ∈ D(g) ⊆ D(g) ⊗W2n denote the Euler vector field on g. Let U be the subalgebra of

D(g)⊗W2n generated by the image of Θ2 and eu.

Definition 4.2.1. Let C be the full subcategory of (D(g) ⊗W2n)-mod, whose objects are

(D(g)⊗W2n)-modulesM , such that the action onM of the subalgebra Z+ is locally nilpotent

and the action of U is locally finite. The category C will be referred to as the category of

admissible (D(g)⊗W2n)-modules.

For any M ∈ C, we have a g-action on M via the map Θ2. As the group G = Sp(V )

is simply connected, the action of U on M being locally finite implies that the g-action on

M can be integrated to get a rational representation of the group G on M . Thus, the local
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finiteness condition in the above definition implies that the modules M are G-equivariant.

We can identify D(g) ⊗ W2n with the ring of differential operators D(g × L). Taking

the order filtration on this algebra, for any finitely generated D(g)⊗W2n-module M , there

exists a characteristic variety Ch(M) ⊆ T ∗(g× L) ≃ g× g× V .

Proposition 4.2.11. For any G-equivariant module M ∈ (D(g) ⊗ W2n)-mod, we have

M ∈ C if and only if Ch(M) ⊆ Xnil. Furthermore, all the objects in C are holonomic

(D(g)⊗W2n)-modules.

Proof. The proof of the fact that M ∈ C if and only if Ch(M) ⊆ Xnil follows by essentially

repeating the proof of Proposition 5.3.2 of [GG06] replacing gl(V )× P by sp(V )× L every-

where. The holonomicity of the objects in C follows from the fact that their characteristic

variety lies in Xnil, which is a Lagrangian subvariety of g× g× V .

We now define the quantum Hamiltonian reduction functor. Let Q be the quotient

(D(g) ⊗ W2n)/((D(g) ⊗ W2n) · Θ2(g)). We have the quantum Hamiltonian reduction of

D(g) ⊗ W2n with respect to the g-action, given by A := Qg =
(
(D(g) ⊗ W2n)/(D(g) ⊗

W2n) · Θ2(g)
)g

. By Theorem 1.1.4, we have an isomorphism A ≃ eHce, where eHce is

the spherical Cherednik algebra with parameter c = (−1/4. − 1/2). Let eHce-mod be the

category of finitely generated eHce-modules. Then, by Proposition 7.2.2 and Corollary 7.2.4

of [GG06], we have:

Proposition 4.2.12. 1. The space Q is a finitely generated (D(g)⊗W2n)-module.

2. There is an exact functor H:

H : (D(g)⊗W2n)-mod −! eHce-mod

M 7! HomD(g)⊗W2n
(Q,M) =Mg.
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3. The functor H has a left adjoint TH:

TH : eHce-mod −! (D(g)⊗W2n)-mod

M 7! Q⊗A M,

such that the canonical adjunction morphism M ! TH(H(M)) is an isomorphism for

all M ∈ (D(g)⊗W2n)-mod.

4. The full subcategory ker(H) is a Serre subcategory of (D(g)⊗W2n)-mod and the functor

H induces an equivalence of categories:

(D(g)⊗W2n)-mod/ ker(H) ≃ eHce-mod

Next, we recall that the spherical subalgebra eHce contains the subalgebra Sym(h)W .

Let Sym(h)W+ denote the augmentation ideal of Sym(h)W . Also recall the category O(Hc) =

O(eHce), which is the full subcategory of eHce-mod whose objects are finitely generated

eHce-modules with locally nilpotent action of Sym(h)W+ ⊆ eHce.

Proposition 4.2.13. The functor H restricts to an exact functor H : C ! O(eHce). This

induces an equivelence of categories C/ ker(H) ≃ O(eHce).

Proof. Under the isomorphism A ≃ eHce, the subalgebra Z+ of A is mapped exactly to

the subalgebra Sym(h)W+ of eHce. Therefore, for any M ∈ C, we have H(M) ∈ O(eHce).

Furthermore, by the corollary to Lemma 2.5 of [BEG03a], there exists an element h ∈ Hc

that acts locally finitely on every element of O(Hc) ≃ O(eHce), such that the image of

the Euler vector field eu in eHce is equal to h upto an additive scalar factor (see the proof

of Formula 6.7 in [BEG03a]). Thus, the local finiteness condition on the eu-action in the

definition of C is automatically true in O(eHce).

54



CHAPTER 5

GROUP-THEORETIC ANALOG

In this chapter, we note the group-theoretic analogs of the results proven in the last two

chapters. Most of these results can be proved by repeating the proofs in the Lie algebra

setting with minor modifications that we will point out.

5.1 Almost commuting scheme and nilpotent subscheme

As before, let V be a symplectic vector space over C of dimension 2n with symplectic form

ω and let G = Sp(V ). We consider the scheme T ∗(G) × V , which is naturally isomorphic

to G × g∗ × V ≃ G × g × V , where g = Lie(G) = sp(V ). The group G acts diagonally on

G× g× V and this action is Hamiltonian with moment map given by:

µ : G× g× V −! g

(g, x, i) 7! Adg(x)− x+ i2.

Motivated by the definition in [Los21], we define the group-theoretic analog X of the almost

commuting scheme to be the zero fiber of this moment map. More precisely, X is the (not

necessarily reduced) closed subscheme of T ∗(G)× V whose defining equations are given by

the matrix entries of the expression Adg(x)− x+ i2. In this section, we are going to study

the properties of this scheme X and, in particular, show that it is irreducible and a reduced

complete intersection of dimension dim(g) + dim(V ).

We define the scheme Xnil to be the reduced subscheme of X whose C-points are exactly

those for which y is nilpotent. That is,

Xnil := {(g, y, i) ∈ G× g× V : Adg(x)− x+ i2 and y is nilpotent}.
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Remark 5.1.1. An analogous scheme was mentioned in the Type A setting in [GG06, Re-

mark 5.3.6].

Theorem 5.1.2. The scheme Xnil is a Lagrangian complete intersection in the symplectic

variety T ∗(G)× V .

The proof of this theorem mimics that of Theorem 3.1.1 by embedding Xnil into the La-

grangian subscheme of T ∗(GL(V )×V ) constructed in [FG10a, Lemma 4.4.1]. As a corollary

of this theorem, we have:

Corollary 5.1.3. The scheme X is a complete intersection.

We’ll prove another corollary of Theorem 5.1.2 that will allow us to prove the reducedness

of X. For this, we recall a construction discussed in Chapter 3: Fix a Cartan subalgebra

h ⊆ g and let W denote the Weyl group. Then, we can consider the composition ϕ : g !

g//G ! h//W, where the first map is the quotient and the second one is the Chevalley

restriction isomorphism. Then, we can consider the morphism:

π : X −! h//W,

that sends a triple (g, y, i) to ϕ(y). It is clear that Xnil = π−1({0}).

Proposition 5.1.4. All fibers of the map π have dimension exactly dim(g) + 1
2 dim(V ).

Proof. For any x ∈ h//W , we have the dimension inequality:

dim(π−1({x})) ≥ dim(X)− dim(h//W ) = dim(g) +
1

2
dim(V ).

Next, we use an argument based on the asymptotic cone construction as described in the

Proof of Proposition 2.3.2 of [GG06]. We have a C∗-action on X such that z ∈ C∗ acts on G

and g by scaling by z2 and on V by multiplication of z. This makes π a C∗-equivariant map.
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This allows us to conclude (see, for example, [CG10, §2.3.9]) that for any x ∈ h//W , we

must have dim(π−1({x})) ≤ dim(π−1({0}) = dim(g) + 1
2 dim(V ). This proves the required

claim.

Using this fact, we can now prove one of the main theorems of this section. Fix a maximal

torus H ⊆ G such that Lie(H) = h. Let Greg ⊆ G be the regular, semisimple locus in G, that

is, Greg is the open subset of G consisting of semisimple elements with distinct eigenvalues.

Define the scheme:

Xreg := {(g, y, i) ∈ X : g is regular, semisimple}.

Theorem 5.1.5. 1. The scheme X is irreducible and we have the equality Xreg = X.

2. The scheme X is a reduced, complete intersection of dimension dim(g) + dim(V ).

This theorem is proven in exactly the same way as Theorem 3.1.5, with the only missing

piece being provided by the following proposition:

Proposition 5.1.6. The scheme Xreg is irreducible.

Proof. Let Hreg (resp. hreg) denote the regular locus inside H (resp. h). Then, it is clear

that Xreg = G×NG(H) X0, where:

X0 := {(g, y, i) ∈ X : g ∈ Hreg}.

Hence, in order to show that Xreg is irreducible, it suffices to show that the action of the

Weyl group W = NG(H)/H on the irreducible components of X0 is transitive. For this, let

Y := {i ∈ V : ω(i, xi) = 0 for all x ∈ hreg}. In terms of coordinates defined in §2.3, we can

identify V with C2n, and in that case:

Y = {(x1, . . . , xn, y1, . . . , yn ∈ C2n : xjyj = 0 for all j}.
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We have a projection map X0 ! Hreg × V , that maps the triple (g, y, i) to the pair (g, i).

This is an affine bundle map. Hence, to prove our claim, we need to show that W acts

transitively on the 2n irreducible components of Y . This is clear because the subgroup

(Z/(2))n ⊆ W acts on Y by swapping the xj ’s with the yj ’s.

Next, we define group-theoretic analogs of the schemes C and A. Define C to be the closed

(not necessarily reduced) subscheme of T ∗(G) whose defining ideal is given by the matrix

entries of Adg(x)− x for (g, x) ∈ G× g ≃ T ∗(G). Define A to be the closed (not necessarily

reduced) subscheme of T ∗(G) whose defining ideal is generated by the 2 × 2 minors of the

matrix Adg(x)−x. The diagonal action of G on the space G×g induces a G-action on both

C and A.

We can prove the following theorem about these schemes:

Theorem 5.1.7. 1. We have an isomorphism of schemes:

(H × h)//W ≃ C//G ≃ X//G.

In particular, the scheme C//G is reduced.

2. We have an isomorphism of schemes:

X//{±1} ≃ A.

In particular, the scheme A is reduced.

Proof. 1. We have natural closed embeddings:

(H × h)//W ↪−! C//G ↪−! X//G.

As X is reduced, so is the schme X//G. Hence, to prove that both of these maps are
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actually isomorphisms, we only need to establish that they are bijections on C-points.

This is the content of Lemma 5.1.8.

2. The proof of this statement is exactly the same as that of Theorem 4.1.3 with the main

tool used being the shifting trick proved in Lemma 4.1.4.

Lemma 5.1.8. Let (g, y, i) ∈ X. Then, there exists a Borel subgroup B ⊆ G such that g ∈ B

and y ∈ Lie(B). Consequently, the G-orbit of this point in X is closed if and only if g and y

are semisimple and i = 0.

Proof. Working with the embedding of sp(V ) in gl(V ) and of Sp(V ) in GL(V ), the condition

(g, y, i) ∈ X can be expressed as g ·y ·g−1−y+ i2 = 0. Hence, we have g ·y−y ·g+ i2 ·g = 0.

As i2 has rank 1, so does the matrix i2 · g. So, by [EG02, Lemma 12.7], we have a common

eigenvector v ∈ V for g and y. Let V ′ ⊆ V denote the complement of v with respect to the

symplectic form. Then, the space V ′/⟨v⟩ is a symplectic vector space fixed by both g and y,

and so, by induction, we get that g and y fix a Lagrangian flag in V , which proves the first

assertion of the lemma. The other assertion follows from this.

Remark 5.1.9. The above lemma provides a group-theoretic analog of Lemma 2.1 and Corol-

lary 2.2 of [Los21].

5.2 Quantum Hamiltonian reduction

In this section, we compute the quantum Hamiltonian reduction of the algebra D(G) of

differential operators on the group G at the Joseph ideal K ⊆ Ug defined in §4.2.1. We first

define all the objects we’re interested in.

Recall that W2n is the Weyl algebra generated by 2n variables. We had defined in section

§4.2.1 an algebra homomorphism Θ1 : Ug! W2n which defines an action of the Lie algebra
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g on W2n. In this section, we refer to the same map as Σ1 for notational convenience (as

will become clear shortly), and so, we have a map Σ1 : Ug! W2n.

Next, we define an action of g on the space D(G). We have the conjugation action of the

group G on itself. Differentiating this action gives rise to a map from the Lie algebra g to

vector fields on G. Vector fields on G correspond to derivations Der(O(G)) of the coordinate

ring O(G). This gives rise to a Lie algebra homomorphism:

Σ0 : g! Der(O(G)) ⊆ D(G).

Hence, this induces an algebra homomorphism Ug ! D(G), which we also denote by Σ0.

Then, this is the quantum co-moment map for the g-action on D(G), i.e., any x ∈ g acts

on D(G) by taking commutator with Σ0(x). We now define the algebras that we will be

working with:

• Consider the algebra D(G) ⊗ W2n. We have the diagonal g-action on this algebra:

Given d⊗ w ∈ D(G)⊗W2n and x ∈ g, we define the action via:

x · (d⊗ w) := [Σ0(x), d]⊗ w + d⊗ [Σ1(x), w].

Let Σ2 : g ! D(G) ⊗ W2n be the Lie algebra homomorphism defined via Σ2 =

Σ0 ⊗ 1 + 1 ⊗ Σ1. This can be extended to get an algebra homomorphism Σ2 : Ug !

D(G) ⊗W2n, which is the co-moment map for the above action. Then, we have the

quantum Hamiltonian reduction
(
(D(G)⊗W2n)/(D(G)⊗W2n)·Σ2(g)

)g
of D(G)⊗W2n

at the augmentation ideal Ug+ of Ug.

• Define J ⊆ D(g) to be the left ideal generated by the image of K ⊆ Ug under the

co-moment map Σ0, that is, J := D(g) · (Σ0(ker(Σ1))). Then, we have the algebra(
D(G)/J

)g
which is the quantum Hamiltonian reduction of the algebra D(G) at the
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ideal K ⊆ Ug.

• Finally, we consider the spherical subalgebra eHtrig
c e of the trigonometric Cherednik

algebra Htrig
c with the parameter c given by c = (clong, cshort) = (−1/4,−1/2).

As in the rational case, we claim that there are isomorphisms:

Ψtrig :
(
D(G)/J

)g
−! eH

trig
c e,

Φtrig :
(
D(G)/J

)g
−!

(
(D(G)⊗W2n)/(D(G)⊗W2n) · Σ2(g)

)g
.

These are established in Theorems 5.2.4 and 5.2.5. We start by stating an analog of

Lemma 4.2.3 for the ideal J, which has exactly the same proof.

Lemma 5.2.1. In the algebra C[G× g], we have an inclusion of ideals J̃ ⊆ gr(J), where J̃

is the defining ideal of the scheme A in G× g.

In order to construct the map Ψtrig, we use the group-theoretic version of the ‘universal’

Harish-Chandra homomorphism from Section 2.4 for the same representation of g as used in

§4.2.1. This gives rise to an algebra homomorphism:

Ψtrig : D(G) −! D(Hreg)W .

Let ∆G be the Laplacian operator on G. Recall from §2.5 the trigonometric Caloger-Moser

differential operator Ltrigc for c = (clong, cshort) = (−1/4,−1/2) and let Ctrigc denote the

centralizer of Ltrigc in D(Hreg)W . Also, let Zg := (Ug)g ⊆ D(G) denote the subalgebra of

bi-invariant differential operators on G.

Lemma 5.2.2. 1. We have that Ltrigc ∈ Im(Ψtrig).
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2. The map Ψtrig induces an isomorphism:

Zg
∼
−! C

trig
c .

Proof. 1. This follows from Proposition 1.4 of [EFK95] by observing that the image of

the Laplacian ∆G under the radial parts map is equal to Ltrigc up to a constant factor

and conjugation by i =
√
−1.

2. This follows by following the proof of Proposition 7.2 of [EG02], with the only added

step being the observation that we have the equality gr(Zg) = Sym(g)g by Harish-

Chandra’s isomorphism.

Corollary 5.2.3. The spherical subalgebra eHtrig
c e lies in the image of Ψtrig.

Proof. By the above lemma, we get that Ctrigc ⊆ Im(Ψtrig). Next, the restriction of Ψtrig to

C[G]g ⊆ D(G)g is exactly the group-theoretic Chevalley restriction map C[G]g ! C[H]W ⊆

D(Hreg). Therefore, to prove the claim, it suffices to show that eHtrig
c e lies in the algebra

generated by Ctrigc and C[H]W .

Recall the algebra S, which was defined as the subalgebra of D(G) generated by the

Dunkl-Heckman operators. Then, the algebra SW lies in the image of eHtrig
c e under the

Dunkl embedding. Also, as the Dunkl operators commute with the operator Ltrigc (by

Theorem 2.5.3), we have the inclusion SW ⊆ Ctrigc .

With the filtrations defined earlier, we have the equalities gr(eHtrig
c e) = C[H × h]W and

gr(SW ) = Sym(h)W ≃ C[h]W . We will show that the algebra eHtrig
c e is generated by SW

and C[H]W . For this, it suffices to show that the algebra C[H × h]W is generated as a

Poisson algebra by C[h]W and C[H]W . This is proven in Proposition A.1.

Finally, as in the rational case, we conclude that the ideal Jg lies in the kernel of the map

Ψtrig.
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Theorem 5.2.4. The map Ψtrig induces an isomorphism of algebras:

(
D(G)/J

)g
≃ eH

trig
c e.

Proof. Let ϕtrig be the natural isomorphism C[H × h∗]W ! C[H × h]W obtained by iden-

tifying h with h∗.

The proof of this theorem follows by adapting that of Theorem 4.2.7. The main argument

in this case is encapsulated in the following commutative diagram:

C[H × h∗]W C[H × h]W (C[A])g

gr(eHce)
(
gr(D(G))/gr(J)

)g

gr(Θ(eH
trig
c e)) gr

(
Ψ
(
D(G)/J

)g)
gr
(
D(g)/J

)g

∼
ϕtrig

∼
Theorem 5.1.7

∼Proposition 2.5.4

∼Proposition 2.5.4

Lemma 5.2.1

proj

Cor. 5.2.3 gr(Ψtrig)

.

Theorem 5.2.5. There is an isomorphism of vector spaces:

Φtrig : D(G)/J −!
(
(D(G)⊗W2n)/(D(G)⊗W2n) · Σ2(g)

){±1}
.

Furthermore, the map Φtrig restricts to an algebra isomorphism between the respective sub-

spaces of g-invariants.

The proof of this theorem follows directly from the shifting trick in Lemma 4.1.4.

Remark 5.2.6. As in the rational case, the graded versions of the maps Ψtrig and Φtrig

give rise to isomorphisms between the respective commutative algebras.

Let (D(G)⊗W2n)-mod denote the category of finitely generated (D(G)⊗W2n)-modules.
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Consider the algebra Zg = (Ug)g ⊆ D(g) of bi-invariant differential operators on G and let

Zg+ = Zg ∩ Ug+. Finally, recall the algebra homomorphism Σ2 : Ug! D(G)⊗W2n.

Definition 5.2.1. Let Ctrig be the full subcategory of (D(G)⊗W2n)-mod whose objects are

(D(G)⊗W2n)-modules with a locally nilpotent Zg+-action and a locally finite Σ2(Ug)-action.

This category Ctrig will be referred to as the category of admissible (D(G)⊗W2n)-modules.

We identify the algebra D(G)⊗W2n with the algebra of differential operators D(G×L)

for a Lagrangian subspace L ⊆ V . Then, given any D(G)⊗W2n-module, we can define its

characteristic variety in T ∗(G× L) ≃ G× g× L.

Using the formalism of [GG06, §7] and the ideas from §4.2.4, we can prove the following

statements about this category Ctrig and its relation to the category O of the trigonometric

Cherednik algebra for the parameter c = (−1/4,−1/2).

Theorem 5.2.7. 1. A Σ2(Ug)-locally finite module M ∈ D(g) ⊗ W2n-mod lies in the

category Ctrig if and only if Ch(M) ⊆ Xnil. Furthermore, all the objects in Ctrig are

holonomic (D(G)⊗W2n)-modules.

2. There exists an exact functor Htrig:

Htrig : (D(G)⊗W2n)-mod −! eH
trig
c e-mod

M 7!Mg.

The full subcategory ker(Htrig) is a Serre subcategory of (D(G) ⊗W2n)-mod and the

functor Htrig induces an equivalence of categories:

(D(G)⊗W2n)-mod/ ker(Htrig) ≃ eH
trig
c e-mod.

3. The functor H restricts to an exact functor H : Ctrig ! O(eH
trig
c e). This induces an
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equivalence of categories:

Ctrig/ ker(Htrig) ≃ O(eH
trig
c e).
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APPENDIX A

INVARIANT DIFFERENTIAL OPERATORS ON THE

MAXIMAL TORUS

Let h be a finite dimensional vector space over C and let W be the Weyl group associated

with a fixed reduced root system R ⊆ h∗. Let H ≃ (C×)n be an algebraic group such

that Lie(H) = h. Then, we can identify the symplectic variety T ∗(H) with H × h, which

has a diagonal action of the Weyl group W . We consider the quotient T ∗(H)//W whose

coordinate ring C[T ∗(H)//W ] = C[H × h]W has a natural Poisson algebra structure. This

ring contains as subalgebras C[H]W and C[h]W .

Proposition A.1. If R is the root system of Type C, (and thus W = (Z/(2))n ⋊ Sn,) the

algebra C[H × h]W is generated as a Poisson algebra by C[H]W and C[h]W .

This result is the group-theoretic analog of a result of Wallach [Wal93] who showed that

the ring of invariants C[h × h∗]W is generated as a Poisson algebra by the algebras C[h]W

and C[h∗]W . The proof that we give here closely follows the one by Wallach.

Proof. Fix coordinates {y1, y2, . . . , yn} on H and dual coordinates {x1, x2, . . . , xn} on h∗, so

that:

C[H × h] ≃ C[x1, . . . , xn, y±1
1 , . . . , y±1

n ].

The subgroup Sn ⊆ W acts by simultaneously permuting the xi’s and yi’s and (Z/(2))n ⊆ W

acts by sending the relevant xi’s to −xi’s and yi’s to y−1
i ’s. The Poisson bracket {·, ·} on

C[H × h]W is the one induced by:

{xi, xj} = 0, {yi, yj} = 0, {yi, xj} = δi,jyi

for all 1 ≤ i, j ≤ n. In particular, the above relations imply that {y−1
i , xj} = −δi,jy−1

i .
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By an averaging argument, every polynomial in C[H × h]W is in the linear span of

polynomials of the form:

A(xr11 y
s1
1 x

r2
2 y

s2
2 . . . x

rk
k y

sk
k ) :=

1

|W |
∑
w∈W

w(x1)
r1w(y1)

s1w(x2)
r2w(y2)

s2 . . . w(xk)
rkw(yk)

sk ,

where ri and si are integers and ri ≥ 0. We’ll prove the proposition by showing that these

polynomials lie in the Poisson subalgebra generated by C[H]W and C[h]W by induction on

k. Consider the element D :=
∑
i(yi + y−1

i ) = 2n · A(y1) ∈ C[H]W .

We first deal with the case k = 1 and consider the polynomial A(xr1y
s
1). Without loss of

generality, we can assume that s ≥ 0. Then, we have the equality:

(r + s)(r + s− 1) · · · (r + 1)A(xr1y
s
1) = {D, {D, {. . . , {D,A(xr+s1 } . . . }},

where we have taken the bracket of A(xr+s1 ) with D successively s times. Note that

A(xr+s1 ) ∈ C[h]W , and so, this proves the base case of the induction.

In general, for any k such that 2 ≤ k ≤ n, we have that:

A(xr11 y
s1
1 ) · A(xr22 y

s2
2 . . . x

rk
k y

sk
k ) =

n− k + 1

n
A(xr11 y

s1
1 x

r2
2 y

s2
2 . . . x

rk
k y

sk
k ) + . . . ,

where the rest of the sum on the right hand side consists of terms with a smaller k. This

completes the proof by induction.

Corollary A.2. The ring of invariant differential operators D(H)W is generated as an

algebra by the subalgebra of bi-invariant differential operators and the algebra C[H]W of

invariant functions.

Remark A.3. The above proposition and corollary are also true for the root system of Type

A, which can be shown by appropriately adapting the above proof.
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