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A classical problem in Combinatorics requires the enumeration of the number of paths in the
Cartesian plane from (0, 0) to (n, n) for a positive integer n, such that one only moves along lattice
lines, one only goes rightwards or upwards and one always stays below or on the line x = y. It turns
out that the answer is Cn = 1

n+1

(
2n
n

)
. A number of elegant proofs of this fact can be found in the

literature, along with several other combinatorial interpretations of Cn, which has become known
as the nth Catalan number. Here, we compute the value of the nth Catalan number by making use
of the representation theory of SU(2).

The special linear group SU(2) = {A ∈ M2(C) : A∗A = I, det(A) = 1} is a compact Lie
group whose finite dimensional irreducible complex representations can be classified by their high-
est weights. More precisely, for every non-negative integer n, SU(2) has a unique irreducible
representation Vn with highest weight n. It is known that Vn is an (n + 1)-dimensional vector
space that is spanned by unique (upto scalar multiplication) vectors corresponding to the weights
−n,−n + 2, . . . , n − 2, n. As the Vi’s are, upto isomorphism, all the irreducible representations of
SU(2), an interesting problem is to decompose Vi ⊗ Vj for some 0 ≤ i ≤ j into a direct sum of
irreducible representations. By some explicit computations, one sees that:

Vi ⊗ Vj ∼= Vi+j ⊕ Vi+j−2 ⊕ · · · ⊕ Vi−j ,

and so, in particular, we have Vn ⊗ V1 ∼= Vn+1 ⊕ Vn−1 for all positive integers n.
Now, we try to see how the Catalan numbers come in. For this, we consider the McKay graph

G of the representation V1. Then, the graph G consists of infinitely many vertices indexed by the
non-negative integers, where the integer i corresponds to the representation Vi, and we have edges
from i to i + 1 and i − 1 (except when i = 0, when we only have the edge from 0 to 1). Now,
observe that:

V1 ∼= V1

V1 ⊗ V1 ∼= V0 ⊕ V2
V1 ⊗ V1 ⊗ V1 ∼= V1 ⊕ V1 ⊕ V3

V1 ⊗ V1 ⊗ V1 ⊗ V1 ∼= V0 ⊕ V0 ⊕ V2 ⊕ V2 ⊕ V2 ⊕ V4
V1 ⊗ V1 ⊗ V1 ⊗ V1 ⊗ V1 ∼= V1 ⊕ V1 ⊕ V1 ⊕ V1 ⊕ V1 ⊕ V3 ⊕ V3 ⊕ V3 ⊕ V3 ⊕ V5,

and so on. This motivates the fact that the number of copies of V0 in V ⊗2n1 is equal to the number
of paths in the graph G from 0 to 0 that consist of exactly 2n steps, and a moment of thought
gives us that this is in bijection with the number of paths we wanted to compute in our original
combinatorial problem. Thus, we have that Cn is equal to the number of copies of V0 in the
decomposition of V ⊗2n1 as a direct sum of irreducible representations.
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We’ll use character theory to determine the above number. If we denote by χi the character of
SU(2) associated to the representation Vi, we have by the orthonormality of characters that:

〈χi, χj〉 =

∫
SU(2)

χi(g)χj(g)dµ(g) = δij ,

where µ is the normalised Haar measure on SU(2). Thus, for any representation V with character
χ, the number of copies of Vi in V is given by the inner product 〈χ, χi〉. Now, as the character for
V ⊗2n1 is given by χ2n

1 , we have by the above discussion:

Cn =

∫
SU(2)

χ2n
1 (g)χ0(g)dµ(g) =

∫
SU(2)

χ2n
1 (g)dµ(g),

as V0 is the trivial one dimensional representation of SU(2). To compute the above integral, we
use the Weyl integration formula which gives us that:

Cn =
1

|W |

∫
T

det((I −Ad(t−1)|su2/t)χ
2n
1 (t)dµ′(t).

Here, W denotes the Weyl group of SU(2) which is isomorphic to Z/2Z giving that |W | = 2, T
is the subgroup of diagonal matrices in SU(2) which is a maximal torus for SU(2), su2 denotes
the space of skew Hermitian 2 × 2 complex matrices having zero trace which is the Lie algebra of
SU(2), t denotes the space of skew Hermitian diagonal matrices with zero trace which is the Lie
agebra of T and µ′ is the normalised Haar measure on T .

Now, elements of T are of the form tθ =

[
eiθ 0
0 e−iθ

]
for 0 ≤ θ < 2π. Thus, T ∼= S1 as a Lie

group and so, we get:

Cn =
1

4π

∫ 2π

0
det((I −Ad(t−1θ )|su2/t)χ

2n
1 (tθ)dθ.

Now, the representation V1 is given by the usual action of SU(2) on C2 by thinking of C2 as column
matrices. In particular, we have χ1(tθ) = tr(tθ) = 2 cos θ. Next, we want to consider su2/t. Now,

as a real vector space, su2 is spanned by t =

[
i 0
0 −i

]
, a =

[
0 1
−1 0

]
and b =

[
0 i
i 0

]
. As t spans t

as a real vector space, {a, b} is a basis for su2/t. Then, we get that:

t−1θ atθ =

[
0 e2iθ

−e−2iθ 0

]
= cos 2θa+ sin 2θb

t−1θ btθ =

[
0 ie2iθ

ie−2iθ 0

]
= − sin 2θa+ cos 2θb.

Thus, in terms of the ordered basis (a, b), the matrix for the action of I − Ad(tθ−1) is given by[
1− cos 2θ − sin 2θ

sin 2θ 1− cos 2θ

]
. In particular, as a linear map over su2/t, we have det(I − Ad(tθ−1)) =

(1− cos 2θ)2 + sin2 2θ = 4 sin2 θ. To sum it up,

Cn =
1

4π

∫ 2π

0
22n+2 sin2 θ cos2n θdθ =

22n

π
(In − In+1),
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where for all non-negative integers t, we define It =
∫ 2π
0 cos2t(θ)dθ. Then, we have by integration

by parts that It = (2t− 1)(It−1− It), giving the recurrence relation It = 2t−1
2t It−1. Using the initial

condition I0 = 2π, we get

It =
(2t− 1)× (2t− 3)× · · · × 3× 1

2t× (2t− 2)× · · · × 4× 2
× 2π =

(
2t
t

)
π

22t−1
.

Thus, we get

Cn =
22n

π

((
2n
n

)
π

22n−1
−
(
2n+2
n+1

)
π

22n+1

)
= 2

(
2n

n

)
− 1

2

(
2n+ 2

n+ 1

)
=

(
2n
n

)
n+ 1

.


