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1. (AM-GM inequality) Given positive real numbers a1, a2, . . . , an, prove that
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2. (Young’s inequality) If a, b, p and q are positive real numbers such that 1
p +

1
q = 1, then show
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3. (RMO 2012) For positive reals a and b such that a+ b = 1, prove that

aabb + abba ≤ 1.

4. For any positive reals a, b, c, show that
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5. For any positive reals a, b, c, d, show that
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6. (Nesbitt’s inequality) For any positive reals a, b, c, prove that
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7. (BMO 1996) Let a, b, c and d be positive real numbers such that a + b + c + d = 12 and
abcd = 27 + ab + ac + ad + bc + bd + cd. Find all possible values of a, b, c, d satisfying these
equations.

8. (RMO 2011) Find all possible real solutions to the equation:

16x
2+y + 16x+y2 = 1.

9. (IMO 2012) Suppose n ≥ 2 is a natural number. Let a2, a3, · · · , an be positive real numbers
such that a2a3 · · · an = 1. Prove that
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