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Abstract

We prove that for any finite dimensional representation V of a finite group G of order n the quotient
variety G\P(V ) is projectively normal with respect to descent of O(1)⊗l where l = lcm{1, 2, 3, 4, · · · , n}.
We also prove that for the tautological representation V of the Alternating group An the projective
variety An\P(V ) is projectively normal with respect to the descent of the above line bundle.
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1 Introduction

Let V be a finite dimensional representation of a finite group G over a field K. We denote by K[V ] the algebra
of polynomial functions on V , which we define to be the symmetric algebra on V ∗, the dual of V . In other
words, the space of homogeneous forms on V of degree m denoted by K[V ]m is Symm(V ∗) the mth symmetric
power of V ∗ and we have K[V ] = ⊕m≥0Symm(V ∗). Then G acts on the algebra K[V ] by the formula
(gf)(v) := f(g−1.v). Then the ring of G-invariant polynomials K[V ]G := {f ∈ K[V ] : gf = f, ∀g ∈ G}
inherits a grading from K[V ]. In [17] and [18] Emmy Noether gave two different constructive proofs for
the fact that K[V ]G is finitely generated K algebra. So, when K is algebraically closed, it is an interesting
problem to study the GIT- quotient varieties G\V = Spec(K[V ]G) and G\P(V ) (see [14] and [15]). Since
G\V = Spec(K[V ]G) is a normal variety as K[V ]G is integrally clased in its field K(V )G of fractions,
it is interesting to study the projective normality of the quotient veriety G\P(V ). In [10] the projective
normality of the polarized variety (G\P(V ),L), where L is the descent of O(1)⊗|G| is considered and it is
proved that when G is either a solvable group or a finite subgroup of GL(V ) generated by pseudo reflections
the above polarized variety is projectively normal. Note that such a descent exists and is unique (see page
63, Theorem 2.3 of [4]). We also note that when G is a finite subgroup of GL(V ) generated by pseudo
reflections, only for the representation V of G the result is known and the result is not known for other
representations of G. In [3] the above results are obtained for every finite group but with the descent of
the line bundle O(1)⊗|G|! and they are reproved in [11]. In this article we prove projective normality for
any finite dimensional representation of any finite group of order n with respect to the descent of the line
bundle O(1)⊗l where l = lcm{1, 2, 3, 4, · · · , n} which is much smaller than n!. We also show that for the
tautological representation V of the alternating group An the polarized variety (An\P(V ),L) is projectively
normal, where L is the descent of O(1)⊗l.

1



The results in this paper arose out of an attempt to understand the quotient W\(T\\(G/P )ss(Lr)), where
G is a semisimple simply connected algebraic group, T is a fixed maximal torus in G, P is the maximal
parabolic subgroup associated to a simple root αr, W is the Weyl group of G with respect to T and Lr is the
line bundle associated to the fundamental weight ωr. For the details see Theorem 4.4 of [8] and Theorem
3.3 of [9]. The second author of this paper is working on understanding the projective normality of torus
quotient of the Grassmannian and flag variety for the action of the Weyl group with respect to a suitable
ample line bundle.

The layout of the paper is as follows. Section 2 consists of preliminary definitions and notations. In
section 3 we prove the projective normality result for any finite dimensional representation of a finite group
and in section 4 we prove projective normality for the tautological representation of the alternating group.

2 Preliminary notations and a lemma

Let n be a positive integer and K be an algebraically closed field of characteristic not dividing n!. Let
V = Kn be the natural representation of the symmetric group Sn, i.e., the action is by permuting the
coordinates. Then the restriction of the representation to the alternating group An is called the tautological
representation (see page 5 of [16]).

LetO(1) denote the ample generator of the Picard group of P(V ). We setO(1)⊗d := O(1)⊗O(1) · · · ⊗ O(1)︸ ︷︷ ︸
d times

.

Then we have the following lemma.

Lemma 2.1. The line bundle O(1)⊗l, where l = lcm{1, 2, 3, 4, · · · , n} on P(V ), descends to the quotient
Sn\P(V ).

Proof. Let G = Sn. By a theorem of Kempf (Page 63, Theorem 2.3 of [4]), a line bundle L on P(V ) descend
to the quotient G\P(V ) if and only if the stabilizer Gx of each point x ∈ P(V ) acts trivially on the fiber Lx.
In our case G acts on O(1) and Gx acts on O(1)x through a character χx : Gx → C∗ and on O(1)⊗lx through
the character χlx. Now if σ ∈ Sn, we write σ as a product of disjoint cycles. Then order of σ is the lcm of
lengths of cycles occur in the product and so order of σ divides l. So Gx acts trivially on O(1)⊗lx . Hence,
O(1)⊗l descends to the quotient G\P(V ).

Remark 1: The above statement holds true and the proof is exactly the same if we replace Sn by the
alternating group An.

Remark 2: Note that if we have a finite group G acting on a projective variety X and suppose a G
equivariant line bundle on X descends to the quotient G\X, then the descendend line bundle is unique.
Since G is finite we have Xss = X and if π : X → G\X is the quotient morphism, then the descendend line
bundle is π∗(L)G.

We will denote by L the descent of the line bundle O(1)⊗l to the quotient Sn\P(V ) as well as to the
quotient An\P(V ).

Now we recall the definition of prjective normality of a projective variety. A projective variety X is said
to be projectively normal if the affine cone X̂ over X is normal at its vertex. For a reference, see exercise
3.18, page 23 of [6]. For the practical purpose we need the following fact about projective normality of a
polarized variety.

A polarized variety (X,L) where L is a very ample line bundle is said to be projectively normal if its
homogeneous coordinate ring ⊕n∈Z≥0

H0(X,L⊗n) is integrally closed and it is generated as a K-algebra by
H0(X,L) (see Exercise 5.14, Chapter II of [6]).
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The polarized variety ( Sn\P(V ),L) is

Proj(⊕m∈Z≥0
(H0(P(V ),O(1)⊗m(n!)))Sn) = Proj(⊕m∈Z≥0

(Symm(n!)(V ∗))Sn).

For a reference, see Theorem 3.14 and page 76 of [14].

Before ending this section we recall the definition of polarizations of a polynomial from page 5 of [21]. Let
V be a finite dimensional representation of a finite group G. Let f ∈ K[V ]G be a homogeneous polynomial
of degree d. For v1, v2, · · · , vm ∈ V and t1, t2, · · · , tm are indeterminates, we consider the function f(

∑
i tivi).

Then

f(
∑
i

tivi) =
⊕

α∈(Z+)m,|α|=d

fα(v1, · · · , vm)tα, (1)

where the fα ∈ K[V ⊕m]G are multihomogeneous of the indicated degree α. Here for α = (a1, a2, · · · , am) ∈
(Z+)m, we have tα = ta1 . . . tam and |α| = a1 + . . .+ am. We call the polynomials fα, the polarizations of f .

Polarizations of a polynomial can also be defined in terms of some linear differential operators called the
polarization operators (see [20]). Choosing a basis for V and writing vi = (xi1, · · · , xin) we define

Dij =

n∑
k=1

xik
∂

∂xjk
.

The operators Dij ’s are called polarization operators. They commute with the action of G on K[V ⊕m]
and applying successively operators Dij (i > j) to f ∈ K[V ]G we obtain precisely (up to a constant) the
polarizations of f in any number of variables.

3 Projective normality of finite group quotients

Before proving the main results in this section we will prove a combinatorial result which is the main
ingredient of the proof.

Lemma 3.1. Given a positive integer r ≥ 9, suppose l denotes the least common multiple of 1, 2, · · · , r.
Then, we have:

l >
r(r2 + 1)(r − 1)

4

Proof. We will verify the inequality for 9 ≤ r ≤ 16. Note that lcm{1, 2, · · · , 10} = lcm{1, 2, · · · , 9} =
2520 > 10×9×101

4 . Note that lcm{1, 2, · · · , r, r+ 1, · · · , r+ i} ≥ lcm{1, 2, · · · , r}, for i a positive integer. Since
r(r2+1)(r−1)

4 is an increasing function of r and 27720 = lcm{1, 2, · · · , 11} ≥ 16×257×15
4 = 15420 the inequality

is verified for 9 ≤ r ≤ 16.

Now we prove the inequality for r ≥ 17. Consider the Chebyshev function defined as: ψ(x) =
∑
n≤x

Λ(n),

where Λ(n) = log p if n is a power of some prime p and is equal to 0 otherwise. Then, we’ll see that our
inequality follows from the fact that l = eψ(r) and the inequality ψ(x) ≥ (x− 2) log 2 for all x ≥ 4 (see page
37 of [19]).

Then, 4l = 4eψ(r) ≥ 4e(r−2) log 2 = 2r > r4 for r ≥ 17, where the last inequality follows by induction.

Next, we have l > r4

4 > r4−1
4 = (r2−1)(r2+1)

4 ≥ (r2−r)(r2+1)
4 = r(r2+1)(r−1)

4 .

Proposition 3.2. Given (m1,m2, · · · ,mr) ∈ Zr≥0, such that:
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r∑
i=1

i.mi ≥ q.l − r.(r−1)
2

where l denotes the least common multiple of 1, 2, · · · , r and q ≥ 2 is an integer. Then there exist (m′1,m
′
2, · · · ,m′r)

satisfying 0 ≤ m′i ≤ mi ∀ i such that:

r∑
i=1

i.m′i = l

Proof. We will give a rigorous proof for r ≥ 9 and after proposition 3.3 we will illustrate the proof for
1 ≤ r ≤ 8. For every i, we have i|l. Hence, if for some i, we have i.mi ≥ l, (i.e. mi ≥ l/i) we can take

m′i = l/i and m′k = 0 for all k 6= i, to get
r∑
i=1

i.m′i = l. So, let us assume that i.mi < l for all i. Next,

it is easy to see that for some j, we must have j.mj >
q.l
r −

r−1
2 . Fixing this j, we construct a set S as follows:

S =

{∑
i6=j

i.bi : j|bi, 0 ≤ bi ≤ mi∀1 ≤ i ≤ r, i 6= j

}
.

Then, we will see in Proposition 3.3 which is proved below that we have an integer s(=
∑
i 6=j

i.si) in S that

lies between l− q.l
r + r−1

2 and l. Note that l− q.l
r + r−1

2 > 0. This follows from the fact that q ≤ r as i.mi < l
for all i by assumption. Also, since j|s, there exists t ≥ 0 such that s+ t.j = l. By the bound on s, we get
that t.j = l − s ≤ q.l

r −
r−1
2 < j.mj and so t < mj . So, if we define m′i = si for all i 6= j and m′j = t, we get

that
r∑
i=1

i.m′i = l and this concludes the proof.

Proposition 3.3. Consider the set S defined as in Proposition 3.2. Then, there exists an element of S lying
between l − q.l

r + r−1
2 and l.

Proof. As we have put the condition that j|bi for all i, each member of S must be divisible by j. Let us try
to get a bound on the largest number in S. For each i 6= j, we have bi ≤ mi and j|bi. Hence, if ci denotes
the maximum possible value that bi can take, we have ci ≥ mi − (j − 1). Thus, if m is the largest number
contained in S, we have:

m =
∑
i6=j

i.ci ≥
∑
i 6=j

i.(mi − j + 1) =
r∑
i=1

i.mi − j.mj − (j − 1).
∑
i 6=j

i ≥ q.l − r.(r−1)
2 − j.mj − (j − 1)( r(r+1)

2 − j)

As a function of j, (j − 1)( r(r+1)
2 − j) is increasing and hence maximised when j = r with the maximum

value r.(r−1)2
2 . As jmj < l by assumption, the above inequality becomes:

m > q.l − r.(r − 1)

2
− l − r.(r − 1)2

2
≥ l − r2(r − 1)

2
, for q ≥ 2.

Using the inequality q.l
r ≥

2l
r > (r2+1).(r−1)

2 from Lemma 3.1, we have m ≥ l − q.l
r + r−1

2 . Therefore, we

conclude that the set S consists of at least one number greater than l − q.l
r + r−1

2 .

Now, let m′ =
∑
i 6=j

i.di be the largest number in S less than l− q.l
r + r−1

2 . By the bound obtained above, we have

m′ < m. Thus, there exists a k for which we have dk < ck. Also, as dk and ck are both divisible by j, we must
have dk ≤ ck−j. Therefore, s := m′+j.k must belong to S (Note that m′+j.k is obtained by replacing dk by
dk+j in the given sum). By the maximality of m′, we must have s ≥ l− q.l

r + r−1
2 . Also, as m′ < l− q.l

r + r−1
2

and jk ≤ r2, we get s = m′ + j.k < l − q.l
r + r−1

2 + r2 < l because q.l
r ≥

2l
r > (r2+1)(r−1)

2 > r−1
2 + r2 by

Lemma 3.1. Hence, we have shown that l − q.l
r + r−1

2 < s < l.
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Now we will verify Proposition 3.2 for 1 ≤ r ≤ 8. We prove a lemma here which will be helpful for the
verification.

Lemma 3.4. Consider 4 non-negative integers a, b,m, n and let s ∈ N be such that a|s and b|s. Suppose
am + bn = s + t for some positive integer t. Let g = gcd(a, b). Suppose t ≥ g(ag − 1)( bg − 1). Then, there

exist m′ and n′ such that 0 ≤ m′ ≤ m and 0 ≤ n′ ≤ n such that am′ + bn′ = s.

Proof. Firstly, let a and b be co-prime. Then, g = 1. Now, if am ≥ s, we can choose m′ = s/a and n′ = 0
and we’ll be done. So, let am < s, i.e., bn > t. Similarly, we can also assume that am > t. Now, we
know that t ≥ (a− 1)(b− 1). So, by Chicken McNugget Theorem (also known as Postage Stamp Theorem
or Frobenius Coin Theorem) (see Proposition 1.17 of [13]), there exist positive integers c and d such that
ac + bd = t. So, we have am > t ≥ ac. Thus, m > c. Similarly, n > d. Therefore, taking m′ = m − c and
n′ = n− d, we have am′ + bn′ = am+ bn− ac− bd = s, and so, we’re done.

Now, consider the general case. As before, we have am, bn > t. Let a′ = a/g and b′ = b/g. Then
gcd(a′, b′) = 1. Again, by Chicken McNugget Theorem, there exist positive integers c, d such that a′c+ b′d =
t/g. Hence, ac + bd = ga′c + gb′d = t. Thus, taking m′ = m − c and n′ = n − d in this case too, we are
done.

Now, consider the problem when r = 8. So, we have non-negtive mi’s such that
8∑
i=1

i.mi ≥ 1652 where we

have taken q = 2. We transform the mi’s as follows. As long as m1 ≥ 2, we can reduce m1 by 2 and increase

m2 by 1, without changing
8∑
i=1

i.mi. Similarly, we can reduce m2, m3 and m4 by increasing m4, m6 and

m8 respectively. Let us assume that these transformations change each mi to ci such that c1, c2, c3, c4 ≤ 1

and
8∑
i=1

i.ci =
8∑
i=1

i.mi ≥ 1652. This implies that 5c5 + 6c6 + 7c7 + 8c8 ≥ 1642. We’ll be done if we can find

a5, a6, a7, a8 such that each ai ≤ ci and 5a5 + 6a6 + 7a7 + 8a8 = 840. Therefore without loss of generality,
we may assume that 5c5, 6c6, 7c7, 8c8 < 840.

Now, we must have 5c5 + 7c7 ≥ 821 or 6c6 + 8c8 ≥ 822. Without loss of generality, we assume that
the former holds true. Thus, 5c5 + 7c7 ≥ 821. Now, we try to get an upper bound on 5c5 + 7c7. Let
5c5 + 7c7 = 840 + t for some integer t which is not necessarily non-negative. By Lemma 3.4, if t ≥ 24, we’ll
be able to get a5 and a7 such that 0 ≤ a5 ≤ c5, 0 ≤ a7 ≤ c7 and 5a5 + 7a7 = 840. Hence, let us assume that
5a5 + 7a7 < 864. Thus, 6a6 + 8a8 > 778. The proof for the other cases are similar.

So, we have 821 ≤ 5c5 + 7c7 < 864 and 778 < 6c6 + 8c8. Now, we must have 5c5 > 400 or 7c7 > 400.
Similarly, we must have 6c6 > 300 or 8c8 > 300. Without loss of generality, let 5c5 > 400 and 6c6 > 300.
Next, find the maximum d5 with d5 ≤ c5 such that 5d5+7c7 ≤ 840. Also, by maximality of d5, 5d5+7c7 > 800.
Next, choose the maximum d such that d ≤ d5 and 5d + 7c7 is divisible by 6. Then, d5 − d ≤ 5 and so,
5d + 7c7 > 775. Thus, choosing a5 = d, a7 = c7, a8 = 0 and a6 = (840 − 5d − 7c7)/6, we will be done.
As can be seen, there was nothing special about 5 and 6, and that, each case can be resolved using similar
arguments.

For r = 7, the argument is similar. We have
7∑
i=1

i.mi ≥ 819. After reducing m1, m2, m3 as we did in the

previous case, we get ci’s such that 4c4 + 5c5 + 6c6 + 7c7 ≥ 813. Using the same chain of arguments as done
for r = 8, we can find a4, a5, a6, a7 such that ai ≤ ci and 4a4 + 5a5 + 6a6 + 7a7 = 420.

For r = 6, we have
6∑
i=1

i.mi ≥ 105. Applying the transformations to m1, m2 and m3, we get ci’s such

that 4c4 + 5c5 + 6c6 ≥ 99. By Lemma 3.4, if 4c4 + 6c6 ≥ 64, we will be able to find the required ai’s. Thus,
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let 4c4 + 6c6 ≤ 62. Thus, 5c5 ≥ 37. This implies that 5c5 ≥ 40. Hence, 4c4 + 6c6 ≤ 59. This implies that
4c4 + 6c6 ≤ 58. Hence, 5c5 ≥ 41 and being a multiple of 5, this implies 5c5 ≥ 45. So, 4c4 + 6c6 ≤ 54. Also,
if 5c5 ≥ 60, we can take a5 = 12 and we are done. So, let 5c5 ≤ 55 and thus, 4c4 + 6c6 ≥ 44.

In conclusion, 44 ≤ 4c4 + 6c6 ≤ 54 and 45 ≤ 5c5 ≤ 55. We must have either c4 ≥ 5 or c6 ≥ 5. Without
loss of generality, let c4 ≥ 5. Let d be the largest integer such that d ≤ c4 and 4d + 6c6 is divisible by 5.
Then, c4 − d ≤ 4. Thus, 4d + 6c6 ≥ 28. As it is divisible by 5, 4d + 6c6 ≥ 30. As 5c5 ≥ 45, taking a4 = d,
a6 = c6 and a5 = (60− 4d− 6c6)/5 we are done.

Next, let r = 5. We have
5∑
i=1

i.mi ≥ 110. Applying the transformations to m1 and m2, we get ci’s

such that 3c3 + 4c4 + 5c5 ≥ 107. By Lemma 3.4, if 3c3 + 4c4 ≥ 66, we will get the required ai’s. So, let
3c3 + 4c4 ≤ 65 and so, 5c5 ≥ 42. This implies that 5c5 ≥ 45. But, if 5c5 ≥ 60, we will be done by taking
a5 = 12 and all the other ai’s as 0. So, let 5c5 ≤ 55. Thus, 3c3 + 4c4 ≥ 52. Therefore, at least one of c3 and
c4 is greater than or equal to 5. Then, the same argument as above gives us the required ai’s.

For 1 ≤ r ≤ 4, Proposition 3.2 can be verified similarly. Therefore, Proposition 3.2 is true for 1 ≤ r ≤ 8.

Corollary 3.5. Let l = lcm{1, 2, · · · , r}. Then the semigroup Ml = {(m1,m2, · · · ,mr) ∈ Zr≥0 :
∑r
i=1mii ≡

0 mod l} is generated by the set Sl = {(m1,m2, · · · ,mr) ∈ Zr≥0 :
∑r
i=1mii = l}.

Proof. The proof follows from Proposition 3.2.

Remark: The affine sub-semigroup generated by the set Sl = {(m1,m2, · · · ,mr) ∈ Zr≥0 :
∑r
i=1mii = l}

is normal. For the definition of the normality of an affine semigroup refer to page 61 of [1].

Let V be the natural representation of Sn. Then for every integer m ≥ 1, Sn acts on the algebra C[V m]
of polynomial functions on the direct sum V m := V ⊕ · · · ⊕ V of m copies of V via the diagonal action

(σf)(v1, · · · , vm) := f(σ−1v1, · · · , σ−1vm), f ∈ C[V m], σ ∈ Sn.

Theorem 3.6. Let V be the natural representation of the Symmetric group Sn. Then for m ≥ 1, the
variety Sn\P(V m) is projectively normal with respect to the descent of the line bundle O(1)⊗l, where l =
lcm{1, 2, 3, · · · , n}

Proof. The algebra K[V ]Sn = K[x1, x2, · · · , xn]Sn is the polynomial ring K[e1, e2, · · · , en], where ei’s are the
elementary symmetric polynomials in xk’s. For the diagonal action of Sn on V m by a theorem of H. Weyl
(see pages 36-39 of [19]), the algebra C[V m]Sn is generated by polarizations of e1, e2, · · · , en.

For each i ∈ {1, 2, · · · , n}, let {eij : j = 1, 2, · · · ai} denote the polarizations of ei where ai is a positive
integer. Since the polarization operators Dij =

∑n
k=1 xik

∂
∂xjk

do not change the total degree of the original

polynomial, we have
degree of eij = degree of ei = i, ∀ j = 1, 2, · · · ai. (2)

Let R := ⊕q≥0Rq; where Rq := (Symql((V m)∗))Sn . Since the K-algebra R is integrally closed, so to
prove our claim, it is enough to prove that it is generated by R1 = (Syml((V m)∗))Sn .

Let us take an invariant polynomial f ∈ (Symql((V m)∗))Sn , where q > 1. Since eij ’s generate C[V m]Sn

with out loss of generality we can assume f is a monomial of the form
∏n
i=1

∏ai
j=1 f

mij

ij .

Since f =
∏n
i=1

∏ai
j=1 e

mij

ij ∈ (Symql(V m))Sn , we have

n∑
i=1

ai∑
j=1

miji = ql
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Let mi =
∑ai
j=1mij then we have

∑n
i=1mii = ql, and hence (m1,m2, · · · ,mn) is in the semigroup

Ml = {(m1,m2, · · ·mr) ∈ Zr≥0 :
∑r
i=1mii ≡ 0 mod l}.

By corollary (3.3), the semigroup Ml is generated by the set Sd = {(m1,m2, · · ·mn) ∈ Zn≥0 :
∑r
i=1mii =

l}. So there exists (m′1,m
′
2, · · ·m′n) ∈ Zn≥0 such that for each i

m′i < mi and

r∑
i=1

m′ii = l.

Again, since m′i < mi =
∑ai
j=1mij , for each i and j there exists m′ij ≤ mij such that

m′i =

ai∑
j=1

m′ij .

Then g :=
∏n
i=1

∏ai
j=1 e

m′ij
ij is invariant under Sn and is in (Syml((V m)∗))Sn .

Let f ′ = f
g . Then f ′ ∈ (Sym(q−1)l((V m)∗))Sn and so by induction on q, f ′ is in the subalgebra generated

by (Syml((V m)∗))Sn .

Hence f = g.f ′ is in the subalgebra generated by (Syml((V m)∗))Sn .

The next corollary gives projective normality for any finite dimensional representation of any finite group
with respect to a much smaller power of O(1) than it is considered in [3] or [11]. The ideas of the proof is
basically same as [11].

Corollary 3.7. Let G be a finite group of order n and W be any finite dimensional representation of G over
C. Let L denote the descent of O(1)⊗l, where l = lcm{1, 2, 3, · · · , n}. Then G\P(W ) is projectively normal
with respect to L.

Proof. Let G = {g1, g2, · · · , gn} and let {w1, w2, · · · , wk} be a basis of W ∗. Let V be the natural representa-
tion of the permutation group Sn. Let {x1, x2, · · · , xn} be a basis of V ∗; then the set {x11, · · · , xn1, · · · , x1k, · · · , xnk}
is a basis of (V k)∗.

Consider the Cayley embedding G ↪→ Sn, g 7→ (gi 7→ gj := ggi). Then

η : Sym((V k)∗)→ Sym(W ∗), xil 7→ gi(wl)

is a G-equivariant and degree preserving algebra epimorphism.

Now we will use Noether’s original argument (see page 2 of [17]) to show that the restriction map

η̃ : (Sym((V k)∗))Sn → (Sym(W ∗))G

is surjective. For any f = f(w1, · · · , wk) ∈ (Sym(W ∗))G, we define

f ′ :=
1

n
(f(x11, x12, · · · , x1k) + . . .+ f((xn1, xn2, · · · , xnk)) ∈ (Sym((V k)∗))Sn .

Then we have

η̃(f ′) =
1

n
(f(g1(w1), g1(w2), · · · , g1(wk)) + . . .+ f(gn(w1), gn(w2), · · · , gn(wk)))

=
1

n
(g1f(w1, w2, · · · , wk) + . . . gnf(w1, w2, . . . , wk)) = f

Hence, η̃(f ′) = f and η̃ is surjective. So the corollary follows from theorem (3.4).
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4 Projective normality for the Alternating group quotient

Theorem 4.1. Let V be the tautological representation of the Alternating group An. Then the quotient
variety An\P(V ) is projectively normal with respect to the descent of the line bundle O(1)⊗l, where l =
lcm{1, 2, 3, · · · , n}.

Proof. The invariant ring K[V ]An is generated by the elementary symmetric polynomials

er =
∑

1≤j1<j2<...<jr≤n

xj1 · · ·xjr

along with the discriminant ∆ =
∏
i<j(xi − xj).

Let R := ⊕q≥0Rq; where Rq := (Symql(V ∗))An . Since the K-algebra R is integrally closed, so to prove
our claim, it is enough to prove that it is generated by R1.

Let us take an invariant polynomial f ∈ (Symql(V ∗))An , where q > 1. Since ei’s and ∆ generate K[V ]An

with out loss of generality we can assume f is a monomial of the form
∏n
i=1 e

mi
i ∆t. Again since ∆2 ∈ K[V ]Sn ,

it is a polynomial in ei’s. So we may assume that t = 0 or 1.

Then f is of the form
∏n
i=1 e

mi
i ∆ or

∏n
i=1 e

mi
i . Since f ∈ (Symql(V ∗))An we have either

∑n
i=1 imi + n(n−1)

2 = q.l or
∑n
i=1 imi = q.l

In either case by proposition (3.2) there exist (m′1,m
′
2, ...,m

′
n) satisfying m′i ≤ mi ∀ i such that:∑n

i=1 i.m
′
i = l

Then g =
∏n
i=1 e

m′i
i is invariant underAn and is in (Syml(V ∗))An . Let f ′ = f

g . Then f ′ ∈ (Sym(q−1)l(V ∗))An

and so by induction on q, f ′ is in the subalgebra generated by (Syml(V ∗))An .

Hence f = g.f ′ is in the subalgebra generated by (Syml(V ∗))An .

Example 1: The alternating group A5 has exactly two irreducible representations of degree 3 (see page
26 of [5]). In this example we will show that projective normality holds for these two representations for the
descent of O(1)⊗|A5|. The Euclidean reflection group of type H3 is the symmetry group of the icosahedron
in R3 and it is abstractly isomorphic to Z2 × A5 where Z2 is the center {±1} and the group of orientation
preserving or rotational symmetries is isomorphic to A5 (see Section 2.13, page 46 of [7]). This shows that
A5 is isomorphic to a subgroup of SO3(R) as well.

The ring of invariants of the group of type H3 is a polynomial ring with generators say, f1, f2 and f3 called
the basic invariants of degrees 2, 6 and 10 (see page 59 of [7]). So the invariants for A5 is the direct sum of the
invariants for H3 and the anti-invariants, which are functions f that transform under w ∈ H3 to −f when
w 6∈ A5. The Jacobian J of the basic invariants is an anti-invariant and every anti-invariant is a product of
J and an invariant polynomial (see Proposition 3.13 of [7]). The Jacobian is of degree 1 + 5 + 9 = 15. So
we conclude that the ring of invariants of A5 is generated by homogeneous polynomials f1, f2, f3 and J of
degrees 2, 6, 10 and 15 respectively. Again since J is an anti-invariant, we have J2 ∈ C[f1, f2, f3].

Let us take a typical invariant monomial fm1
1 fm2

2 fm3
3 Jm4 ∈ (Symq|A5|V ∗)A5 , where q ≥ 2 and V is the

above 3 dimensional representation. Since J2 ∈ C[f1, f2, f3], we may assume that m4 = 0 or 1. If m4 = 1,
then we have

2m1 + 6m2 + 10m3 + 15 = 60q,
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which is absurd. So we conclude thatm4 = 0. Now we have 2m1+6m2+10m3 = 60q orm1+3m2+5m3 = 30q.
By repeatedly applying Lemma 2.1 of [10] we see that there exist (m′1,m

′
2,m

′
3) ∈ Z3

≥0, m′i ≤ mi for i = 1, 2, 3

such that 2m′1 + 6m′2 + 10m′3 = 60. Then g = f
m′1
1 f

m′2
2 f

m′3
3 is invariant under A5 and is in (Sym|A5|(V ∗))A5 .

Let f ′ = f
g . Then f ′ ∈ (Sym(q−1)|A5|(V ∗))A5 and so by induction on q, f ′ is in the subalgebra generated by

(Sym|A5|(V ∗))A5 . Hence f = g.f ′ is in the subalgebra generated by (Sym|A5|(V ∗))A5 .

Consider the inner automorphism τ of S5 corresponding to conjugation by the trasposition (12). It sends
(12345) to (13452) and leaves invariant the other conjugacy classes of A5. So τ is an outer automorphism of
A5. The other 3 dimensional irreducible representation of A5 is obtained by twisting the above representation
by this automorphism and hence the ring of invariants are the same. So projective normality holds for this
representation as well.

Remark: As noted in the introduction the projective normality result is known only for the standard
representation of the symmetric group and it is easy to see that it also holds for the trivial and sign repre-
sentation. For other irreducible representations of the symmetric group finding a minimal set of generators
and the relations between them seems to be a difficult problem. On the other hand it is interesting to study
projective normality for these representations as well.

Example 2: Consider the irreducible representation W of S6 corresponding to the partition 2 + 2 + 2
which is of dimension 5. This representation can be obtained by twisting the standard 5 dimensional
representation by the exceptional outer automorphism of S6. In this way this can be seen as a reflection
representation in which the products of three disjoint 2-cycles act as reflections. In other words the outer
automorphism of S6 induces an isomorphism of the ring of invariants of the standard representation and the
ring of invariants of W . So S6\\P(W ) ∼= S6\\P(V ), where V is the standard representation of S6. In fact
this is the only irreducible representation of a non-solvable symmetric group apart from trivial, sign and
standard representation for which the ring of invariants is a polynomial ring.
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