Mathematics of Shoelacing

Francwork

Defⁿ: A nathimatical shoe of stretch h with 2n eydets: $A_1 \cdot \cdots + B_n$ $A_2 \cdot \cdots + B_n$ $A_2 \cdot \cdots + A_n \cdot \cdots + A$

· No 3 consecutive explets in the fath lie in the same column.

Examples :

in the bottom half
Lingth of longest lacing =
$$\frac{n^2}{2}$$

Number of such lacings = $\frac{1}{2} \left(\frac{n}{2}\right)! \left(\frac{n}{2}-i\right)!$
For odd n, length = $n\frac{2}{2}$
Number of lacings = $\left(\binom{n-1}{2}\right)!$ ²
Country lacings

No. of traversals that start with the block "A"
=
$$\binom{n-k-1}{\binom{n-k}{k}}$$

$$= \left(\begin{array}{cc} n-k-l \\ k-l \end{array} \right) \left(\begin{array}{c} n-k \\ k \end{array} \right)$$

No. of indices of the first one =
$$n! (n-1)!$$

"" " cccord one = $2 \cdot n! (n-1)!$

$$flince, net numbr (n-1)/2 \left(\begin{array}{c} n-k-1 \\ k = 0 \end{array} \right) \left(\begin{array}{c} n-k-1 \\ k \end{array} \right) \left(\begin{array}{c} n-k \\ k$$

$$= \left(\underbrace{N \mid }_{2}\right)^{2} \underbrace{\sum_{k=0}^{(n-1)/2} \frac{1}{n-k}}_{k \neq 0} \left(\underbrace{n-k}_{k}\right)^{2}$$

Examples ;

lengths of lacings

theorem :

- · Bowtie lacings are the shortest, in greed.
- · aissurs lacings are the shortest dense lacings.
- · All superstraight lacings are the shortest straight lacings for n-wm.

Theorem :

. For short show, devil laings are the longest.

· For long shows, it is conjectured that angel lacings are the longest.

Theorem: There exists
$$h_n > 0$$
 s.t.
for $h < h_n$, cuiss-cross lacing is the strongent.
For $h > h_n$, zig-zag lacing is the strongest.

Proof ides:
Let V be the collection of the vertical lengths
of the diagonals in an
$$n - lacing$$
.
We want to maximise $\sum_{s \in V} \frac{1}{\sqrt{1+(hs)^2}}$
Rules:
· If V contains less than n elements, add $n-m$
O's and $u-1$ 1's.
If V contains $n \leq n \leq 2n$ elements, add $2n-m-1$
L's and $L = n-1$.

· If V contains elements whose sum exceeds 2(n-1),

replace one v by v-1, and we improve the curves
• Griven v, v' E V s.t. v+v' ≥ 2, if
$$\exists w, w'$$

s.t. $0 \leq w, w' \leq n-1$
• $v+v' = w+w'$
 $\frac{1}{\sqrt{1+(hv)^2}} + \frac{1}{\sqrt{1+(hv)^2}} \leq \frac{1}{\sqrt{1+(hv)^2}} + \frac{1}{\sqrt{1+(hv)^2}}$
replace v, v' by w, w'.
Lemma: The set V determines the criss-cross and
zig-zag lacings uniquely.
Lemma : For sets V other than the 2 above, it is
always possible to perform one of the rule.
hn satisfies $u-2 + \frac{1}{\sqrt{1+(n-1)^2}h^2} - \frac{n-1}{\sqrt{1+h^2}} = 0$.