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1 Introduction

The study of quivers is motivated by their connection to a wide range of problems in various fields of
mathematics. Quivers and their representations provide for a uniform formulation of some important
problems in linear algebra and representation theory. Every finite dimensional k-algebra is Morita
equivalent to the path algebra kQ of some quiver Q modulo some relations, which potentially makes
the study of representations easier because of the nice homological properties of quivers. Apart from
this, Ringel discovered that quiver representations are related to Kac-Moody Lie algebras, which
inspired the study of associated geometric objects called quiver varieties.

One of the first major results proven in the theory of quivers was Gabriel’s striking classification
of quivers of finite type, that is, quivers having finitely many indecomposable representations upto
isomorphism (see [7]). Gabriel established that the underlying undirected graph of a quiver of finite
type must be a Dynkin quiver, and that the indecomposable representations of such quivers are in one-
to-one correspondence with the positive roots associated to the root data of the given Dynkin quiver.
Kac widely generalized this result by providing a description for the dimensions of indecomposable
representations of any arbitrary quiver (see [11, Section 3, Theorem 1′]).

In [12], Kac formulated the following two conjectures regarding absolutely indecomposable repre-
sentations of a quiver over finite fields: Given a quiver Q and a dimension α, if nα(q) denotes the
number of absolutely indecomposable representations of Q over Fq having dimension α, then:

• nα(q) is a polynomial in q with non-negative integer coefficients.

• The constant term of the above polynomial equals the multiplicity of α as a root in the Kac-
Moody algebra associated to Q.

These conjectures were eventually proven for the case when α is indivisible in [4], and then, in general
in [9] and [10].

Below, we’ll give an outline of the proof of the first conjecture in the case when the dimension α
is indivisible. The argument here almost entirely follows that given in [4] and is as follows. The idea
will be to prove that nα(q) is equal to the Poincare polynomial of a certain variety Xs (to be defined
in Section 6.1) times a power of q. This will be done by showing that nα(q) counts the Fq-points on
Xs (Proposition 6.4), and then, counting the points on Xs by using the Grothendieck-Lefschetz trace
formula for the Frobenius action on l-adic cohomology with compact support (Theorem 7.2).

2 Definitions and setup

Most of the definitions in this section have been taken from [15]. A quiver is a 5-tuple (Q,E, V, h, t),
where Q denotes a directed graph, E its set of edges, V its set of vertices and h, t : E → V respectively
denote the head and tail functions. By abuse of notation, this quiver may simply be referred to as
Q. A representation V of Q over a field k is a set of finite-dimensional k-vector spaces (Vi)i∈V and
k-linear maps φe : Vh(e) → Vt(e) for every e ∈ E. The sequence of dimensions α = (αi)i∈V ∈ ZV , where
αi = dimk(Vi), is called the dimension vector or, simply, the dimension of the representation V . The
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dimension is called indivisible if the GCD of the αi’s is 1. The Tits form qQ associated to the quiver
Q is a quadratic form on ZV defined as: (xi)i∈V 7→

∑
i∈E x

2
i −

∑
e∈E xh(e)xt(e).

The k-representations of a quiver Q can also be seen as modules over a certain k-algebra kQ,
known as the path algebra of Q. The set of oriented paths in Q forms a basis for the underlying vector
space of kQ, whereas, multiplication of two paths is defined to be their concatenation, whenever it
makes sense, and zero otherwise. Interpreting representations this way, we have the natural concepts of
morphisms between representations, subrepresentations, direct sums and quotients of representations,
irreducible (or simple) and indecomposable representations. We denote by Rep(Q,α) the space of all
representations of Q having dimension α.

A representation x ∈ Rep(Q,α)(Fq) is called absolutely indecomposable if x ⊗ k ∈ Rep(Q,α)(k)
is indecomposable, where k = Fq. We denote by Rep(Q,α)a.i. the set of absolutely indecomposable
representations. Define nα(q) to be the number of elements in Rep(Q,α)a.i.(Fq) upto isomorphism.

The space Rep(Q,α) is a vector space isomorphic to
∏
e∈E Hom(kt(e), kh(e)) and has a natural

linear action of the reductive group
∏
i∈V GLαi by conjugation. As the scalar matrices (λIαi)i∈V ∈∏

i∈V GLαi act trivially on the variety, we consider the action of the quotient group which we denote
by G(α).

3 Deformed preprojective algebras

Given a quiver Q, we associate with it a double quiver Q which is obtained by taking the quiver Q and
adding for each edge e in it, an edge e∗ in the opposite direction. Then, Rep(Q,α) too has the action
of G(α) by conjugation. Given λ ∈ kV , we define the corresponding deformed preprojective algebra as:

Πλ := kQ/
(∑
a∈E

[xa, xa∗ ]−
∑
i∈V

λiIαi

)
.

The Lie algebra of G(α) is a Lie subalgebra of
∏
i∈V Mαi×αi consisting of the space of trace zero

matrices, and is denoted by g. We define the following map:

µ : Rep(Q,α)→ g : (xi)i∈Q 7→
∑
a∈E

[xa, xa∗ ]

(where, by abuse of notation, we have identified Q with its set of edges). The vector space Rep(Q,α)
can be identified with the cotangent bundle of Rep(Q,α), and thus has a natural symplectic structure.
The G(α)-action on Rep(Q,α) turns out to be Hamiltonian and the above map can actually be
interpreted as the moment map corresponding to this action.

If we have a non-zero Πλ-representation of dimension α, then from the defining relation of Πλ, we
get 0 = Tr(

∑
i∈V λiIαi) = λ.α, where (., .) is the Euclidean inner product in RV . In fact, if we let λ

denote the element (λiIαi)i∈V ∈ g, we have that µ−1(λ) = Rep(Πλ, α).

4 Counting representations

Fix a quiver Q and an indivisible dimension α = (αi)i∈V . A vector λ ∈ ZV is called generic with
respect to α if λ.α = 0 and λ.β 6= 0 for any β such that βi ≤ αi for all i, with β 6= 0, α. Such a λ can
be chosen if and only if α is indivisible. Fix any such λ. Finally, fix a prime power q and let k := Fq.
For indivisible dimensions, the notions of indecomposability and absolute indecomposability coincide,
because if a representation splits in a finite extension of Fq, all the subrepresentations will be Galois
conjugates and, thus, have the same dimension.

In this section, we’ll prove the following proposition:

Proposition 4.1. nα(q) = qqQ(α)−1|Rep(Πλ, α)(Fq)|/|G(α)(Fq)|.
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4.1 Relating Πλ-representations to Q representations

The imbedding kQ ↪→ Πλ induces a map on the representations in the opposite direction, which we
denote by π : Rep(Πλ, α) → Rep(Q,α). A representation x of Q is said to have a lift to Πλ if there
exists a Πλ-representation y such that π(y) = x.

Lemma 4.2. x ∈ Rep(Q,α) has a lift if and only if it is an indecomposable representation.

Proof. We consider the following short exact sequence associated with any representation x = (xe)e∈E ∈
Rep(Q,α): (see [3, Lemma 3.1])

0→ Ext1(x, x)∗ → Rep(Qop, α) φ−→ End(α) θ−→ End(x)∗ → 0. (1)

Here, Qop represents the quiver obtained by reversing the edges of Q, End(α) denotes the space∏
i∈V Mαi×αi and End(x) is the space of quiver endomorphisms of x. In this sequence, the maps θ

and φ can be described explicitly as:

φ : Rep(Qop, α)→ End(α) : (ye∗)e∈E 7→
∑
e∈E

[xe, ye∗ ],

θ : End(α)→ End(x)∗ : (γi)i∈V 7→ [(δi)i∈V 7→
∑
i∈V

Tr(γiδi)].

From these, we get that x has a lift to Πλ if and only if there exists a representation y of Qop
such that φ(y) = λ, which happens if and only if for all endomorphisms δ = (δi)i∈V of x, we have
θ(λ)(δ) =

∑
i∈V λi Tr(δi) = 0.

For any y ∈ Rep(Πλ, α), we want to show that π(y) is an indecomposable representation of Q.
Suppose π(y) = x′ ⊕ x′′ is a decomposition as Q-representations. Then, the projection π(y) onto x′
is an endomorphism. By the previous paragraph, we must have 0 =

∑
i∈V λi Tr(δi) = λ.β, where

β denotes the dimension of x′. By genericity, we must have β = α or β = 0, proving that π(y) is
indecomposable.

Conversely, let x be an indecomposable representation of Q. We need to show that for any
δ ∈ End(x), we have θ(λ)(δ) = 0. Now, any such δ can be written as κ+n, where κ is an isomorphism
and n is nilpotent. Due to absolute indecomposability, Fitting Lemma gives that κ must be of the
form c + n′ for a scalar c and a nilpotent endomorphism n′. Then, we have θ(λ)(δ) = θ(λ)(c) =
c
∑
i∈V λiαi = c(λ.α) = 0, thus proving the claim.

If x ∈ Rep(Q,α) has a lift, the sequence (1) implies that there are exactly |Ext1(x, x)∗| =
|Ext1(x, x)| lifts. Next, we prove the fact that dim(End(x)) − dim(Ext1(x, x)) is independent of
the choice of x ∈ Rep(Q,α)a.i. This is seen by taking the Euler characteristic of the exact sequence,
to get that:

dim(End(x))− dim(Ext1(x, x)) = dim(End(x)∗)− dim(Ext1(x, x)∗)
= dim(End(α))− dim(Rep(Qop, α))
=
∑
i∈V

α2
i −

∑
e∈E

αh(e)αt(e)

= qQ(α),

which is independent of the choice of x.

4.2 Translation to a geometric setting

Proof of Proposition 4.1. Two representations V and V ′ of Q having dimension α are isomorphic if
and only if they lie in the same orbit under the G(α) action. Hence, the set of orbits Rep(Q,α)/G(α)
can be identified with the isomorphism classes of representations of Q. By Burnside’s counting lemma,
we get:

|Rep(Q,α)a.i.(Fq)/G(α)(Fq)| =
1

|G(α)(Fq)|
∑

x∈Rep(Q,α)a.i.(Fq)
|StabG(α)(x)|.
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Next, we claim that q.|StabG(α)(x)| = |End(x)| for all x. To prove this, we observe that every
element in End(x) is of the form c + n for some scalar c and some nilpotent endomorphism n (by
Fitting Lemma). Of these, the invertible elements are those where c 6= 0. Thus, if the number of
nilpotent endomorphisms in End(x) is t, we have |End(x)| = qt, whereas |G(α)| = (q−1)t/(q−1) = t
(as we quotient out the scalars), and so, q.|StabG(α)(x)| = |End(x)|. Hence,

|Rep(Q,α)a.i.(Fq)/G(α)(Fq)| =
1

|G(α)(Fq)|
∑

x∈Rep(Q,α)a.i.(Fq)

1
q
|End(x)|

= 1
q.|G(α)(Fq)|

∑
x∈Rep(Πλ,α)(Fq)

|End(π(x))|
|Ext1(π(x), π(x))|

= 1
q.|G(α)(Fq)|

∑
x∈Rep(Πλ,α)(Fq)

qqQ(α)

= qqQ(α)−1 |Rep(Πλ, α)(Fq)|
|G(α)(Fq)|

.

5 Geometric Invariant Theory

The theory of this section has almost entirely been taken from [8]. Given the action of a reductive
group G on an affine variety X = Spec(A), the naive quotient X/G doesn’t, generally, behave nicely.
One fix to this problem is to work with the categorical quotient X//G := Spec(AG), where AG denotes
the subring of invariants in A under the action of G. Alternatively, we can also define the GIT quotient
of X by G. For this, we first fix a character χ : G→ k× and consider the space of χn-semi-invariant
polynomials defined as:

Aχ
n := {f ∈ A : g.f = χ(g)nf for all g ∈ G}.

This allows us to define the graded ring: Aχ := ⊕n≥0A
χn , and we define the GIT quotient of X under

the G-action with the stability condition χ to be X//χG := Proj(Aχ). When we take χ = 1, this
reduces to the categorical quotient defined above.

A point x ∈ X is said to be χ-semistable if for some n ≥ 1, there exists a χn-semi-invariant
f ∈ k[X] such that f(x) 6= 0. Such a point x is called stable if its G-orbit is closed and its stabiliser
in G is finite. The set of χ-semistable in X is denoted by Xχ. Two points semistable points x and x′

are said to be S-equivalent if and only if G.x and G.x′ intersect in Xχ. Now, the inclusion Aχ ↪→ A
induces a map π : Xχ → X//χG. Then, we have the following result (see [18, Theorem 3.14]):

Proposition 5.1. 1. The map π induces a one-to-one correspondence between the S-equivalence
classes of G-orbits in X and the geometric points of X//χG.

2. The image under π of the set of stable points is a smooth subvariety of X//χG. In particular, if
every semistable point is stable, X//χG is smooth.

The following characterisation of semistable points is due to Mumford, and popularly referred to
as the Hilbert-Mumford criterion:

Theorem 5.2 (see [13], Theorem 1.4). Given a k-point x of X and G-stable subvariety S of X, then
G.x and S intersect if and only if there exists a one parameter subgroup θ of G, such that limt→0 θ(t).x
exists and lies in S.

In the context of quivers, we can consider stable and semistable representations in Rep(Q,α) under
the action of G(α). For any θ = (θi)i∈V ∈ ZV , we can associate a character χθ : G(α)→ k× such that
χ(g) =

∏
i∈V det(gi)θi for all g = (gi)i∈V ∈ G(α). In this situation, we have the followung consequence

of the Hilbert-Mumford criterion:
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Theorem 5.3 (King. [14], Proposition 3.1). A point x ∈ Rep(Q,α) is χθ-semistable if and only if
we have θ.β ≥ 0 for all β ∈ ZV such that x has a proper subrepresentation having dimension β. The
representation x is stable under the same conditions with strict inequality holding for every proper
subrepresentation.

6 Counting points on varieties

The following lemma, along with Proposition 4.1, implies that nα(q) = qqQ(α)−1|X(Fq)|, where X :=
Rep(Πλ, α)λ//G(α).

Lemma 6.1. |X(Fq)| = |Rep(Πλ, α)(Fq)|/|G(α)(Fq)|

Proof. If we have x ∈ Rep(Πλ, α)(Fq) and a subrepresentation y of x whose dimension is β, we must
have λ.β = 0. Hence, for sufficiently large q, by genericity of λ, we get that x must be simple. Thus, x
doesn’t have any nilpotent endomorphisms proving that End(x) = Fq, and so, StabG(α)(k)(x) is trivial.
Thus, |Rep(Πλ, α)(Fq)|/|G(α)(Fq)| = |Rep(Πλ, α)(Fq)/G(α)(Fq)|.

Next, we consider the natural map:

φ : Rep(Πλ, α)(Fq)/G(α)(Fq)→
(

Rep(Πλ, α)(k)/G(α)(k)
)Gal(k/Fq)

.

We claim that this map is a bijection. Injectivity follows from Noether-Deuring theorem (see [17,
Theorem 19.25]), which basically says that under the given conditions, representations which become
isomorphic on the extension of scalars must have been isomorphic to start with. (The proof of this
theorem is a linear algebraic argument that involves the Krull-Schmidt theorem.) For surjectivity, we
note that for any orbit on the right hand side we have representations over k that are invariant (upto
isomorphism) under the Galois action, and so by [16, Lemma 5.3.2], the field of definition of such
representations must be Fq, implying that they lie in the image of φ.

As each representation in Rep(Πλ, α)(k) is simple, by King’s theorem we get that every represen-
tation is stable, and thus, all G(α)(k)-orbits are closed. Now, the k-valued points of the categorical
quotient Rep(Πλ, α)//G(α) correspond to the closed orbits in Rep(Πλ, α) under the G(α)-action under
the usual categorical quotient map. So, we have the chain of equalities:

|Rep(Πλ, α)(Fq)/G(α)(Fq)| = |(Rep(Πλ, α)(k)/G(α)(k))Gal(k/Fq)| = |X(k)Gal(k/Fq)| = |X(Fq)|,

completing the proof.

6.1 Shifting to a different variety

In order to use the trace formula to count points on our variety, we will shift to a different variety that
corresponds to representations of the undeformed preprojective algebra, unlike X. This will make it
easier to count points later using the trace formula.

Consider the subvariety X ⊆ Rep(Q,α)× k whose ideal of definition is generated by polynomials
corresponding to the equation µ(x) = sλ for x ∈ Rep(Q,α) and s ∈ k. We get a G(α)-action on
Rep(Q,α)× k by making it act trivially on the second coordinate, and this gives a G(α)-action on X.
Let Z := Xλ.

Lemma 6.2. Z is a smooth variety.

Proof. Pick any x ∈ Rep(Q,α)λ with µ(x) = sλ for some s ∈ k. Let φ be any endomorphism of x.
Then, if we have β and β′ as the dimensions of ker(φ) and Im(φ) respectively, we get β + β′ = α,
and so, genericity of λ and semistability imply that one of β or β′ must be zero and the other must
be α, which means that every endomorphism of x is either zero or a bijection. Then, by absolute
indecomposability, we get that End(x) = k, which means that the action of G(α) on x is free. Then,
by [4, Lemma 2.1.5], we get that the moment map is smooth at x. Thus, Z is smooth.
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Due to genericity, every semistable representation is stable (see [4]), and so, we get that the GIT
quotient X = Z//G(α) is a smooth variety. In fact, if we consider the map π : X → k induced by the
projection of Z onto the second coordinate, we get that each fiber is a non-singular quasi-projective
variety.

Next, take the Gm action on Z defined by t.(x, s) = (tx, t2s). This induces an action of Gm on X ,
and the map π is Gm-equivariant. Also, as t → 0, every point in Z goes to (0, 0), which may not be
an element of Z, but exists in the quotient X , and so, the limit of t.z as t → 0 exists for all z ∈ X .
The reason for constructing such a Gm-action is the following result:

Proposition 6.3 (Nakajima). Suppose we are given a smooth variety X and a morphism π : X → k
such that every fibre is a non-singular quasi-projective variety. Suppose we have a Gm action on X
that is Gm-equivariant, and for every x ∈ X , the limit limt→0 t.x exists. Then, for sufficiently large
q, the number of Fq points in X above any γ ∈ Fq is independent of the choice of γ, provided that π
isn’t the constant zero map.

Proof. For any c ∈ k, let Xc = π−1(c). Then, X1 is isomorphic to Xt for all t ∈ k×, and so, we only
need to compare |X1| and |X0|. Let XGm = tαFα be the decomposition into connected components.
Then, we have the Bialynicki-Birula decompostion X into a disjoint union of components Xα, such
that each Xα is an affine fibration over Fα (see [1, Theorem 4.1, Proof of Theorem 4.2]). Let the
dimension of the fibration Xα/Fα be nα. Then,

|X (Fq)| =
∑
α

|Xα(Fq)| =
∑
α

|Fα(Fq)|qnα .

As a point in X is fixed under theGm-action only if it projects to 0 under π (due to theGm-equivariance
of π), we have XGm ⊆ X0, and so, we have a similar decomposition X0 = tα(X0)α. Then, (X0)α is
again an affine fibration over Fα, this time of dimension nα − 1. Hence, |X0(Fq)| = 1

q |X (Fq)| =
1
q

∑
t∈Fq |Xt(Fq)| =

q−1
q |X1(Fq)|+ 1

q |X0(Fq)|, and thus, |X0(Fq)| = |X1(Fq)|.

Remark 6.1. The above proposition is not applicable when π−1(1)(Fq) is empty. But, in that case,
|X(Fq)| = 0, which is a polynomial in q with non-negative coefficients, and so, the same is true for
nα(q).

Applying this proposition to our situation, we have that |X(Fq)| = |π−1(1)(Fq)| = |π−1(0)(Fq)| =
|Xs(Fq)|, where Xs := Rep(Π0, α)λ//G(α), for sufficiently large q. Thus, we have:

Proposition 6.4. nα(q) = qqQ(α)−1|Xs(Fq)|.

6.2 Purity

We want to define the Frobenius morphism for a scheme π : Z → Spec(k). First, define the map
G : Z → Z which is the identity map on topological spaces, whereas on the structure sheaf, G# :
O(Z)→ O(Z) is the qth-power map. Then, G is a morphism of schemes, but isn’t k-linear. Define the
scheme Z ′ to be the same as Z, but with the structural morphism equal to π ◦G = G′ ◦π, where G′ is
the Frobenius morphism for Spec(k). Then the map G becomes a k-linear morphism F : Z ′ → Z, and
this k-morphism F is called the Frobenius morhpism on Z (after identifying the schemes Z and Z ′).

Now, given a variety Z and a prime l, we can define the étale cohomology groups H i(Z,Z/lkZ) for
all k ≥ 1 (see [6, Chapter 1]). Then, the l-adic cohomology groups of Z are defined as:

H i(Z,Ql) := lim←−
k

H i(Z,Z/lkZ)⊗Zl Ql.

Finally, the l-adic cohomology of Z with compact support is constructed by taking an open immersion
j : Z → X for some proper scheme X, and defining H i

c(Z,Ql) := H i(X, j!Ql), where j!Ql denotes
extension by zero of the sheaf Ql. This definition is independent of the choice of the immersion j.
If Z is a variety over k of dimension n, the Frobenius morphism on Z induces an action F ∗ on the
l-adic cohomology with compact support (for any l coprime to q), and we say that Z is pure if all the
eigenvalues of F ∗ due to its action on H i

c(Z,Ql) have absolute value qi/2, for all 0 ≤ i ≤ 2n.
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Weil conjectures ([5, Corollary 3.3.9]) imply that a smooth, projective variety over k is pure, but
this won’t be sufficient for us as Xs isn’t necessarily projective. In order to show that Z is pure, we’ll
be using the following proposition:

Proposition 6.5. Suppose Z is a smooth, quasi-projective variety with a Gm action, such that for all
x ∈ Z, the limits limt→0 t.x exists in Z. Also, suppose the fixed point set ZGm is a projective variety.
Then, Z is cohomologically pure.

Proof. Let ZGm = tαLα be the decompositon into connected components. Then, we have the Bialyn-
icki Birula decomposition Z = tαZα, such that Zα and Lα are smooth, each Zα is an affine fibration
over Lα, and we have a filtration ∅ = Z0 ⊆ Z1 ⊆ Z2 ⊆ . . . ⊆ Zn = Z where each Zi is a closed subset
of Z such that for each i, Zi+1 \ Zi is Zα for some α (see [1, Theorem 4.1, Proof of Theorem 4.2] and
[2, Proof of Theorem 3]).

Lα is pure because of Weil conjectures. As Wα is an affine fibration over Lα, their l-adic cohomology
is isomorphic, and so, by Poincare duality, the eigenvalues of the action of the Frobenius on l-adic
cohomology with compact support are the same in the two cases, implying that Wα is pure. Then,
gluing together the Zα’s according to the above filtration, we get that Z is pure.

In order to apply this proposition to our variety Xs, we consider the action of Gm on Rep(Π0, α)λ
by defining t.x for any t ∈ Gm and x ∈ Rep(Π0, α)λ to be the representation whose linear maps are t
times those of x. Then, consider the action induced by this on Xs. This is a restriction of the action
of Gm defined on X in Section 6.1. Hence, the purity of Xs follows from the following proposition:

Proposition 6.6. In the above setting and notation, XGm
s is a projective variety.

Proof. For this, consider the variety X0
s = Rep(Π0, α)//G(α). Then, the map φ : Xs → X0

s , induced
by the natural map Rep(Π0, α)λ → Rep(Π0, α), is a projective morphism. Also, our action of Gm on
Xs extends to an action on X0

s , making the above map Gm-equivariant. Now, X0
s = Spec(AG(α)),

where A is the ring of regular functions on Rep(Π0, α). AG(α) is graded under the action of Gm,
and each homogeneous part is a finite dimensional k-vector space. Now, the only prime ideal that
remains fixed under the action of Gm is the maximal ideal (AG(α))+, and so, (X0

s )Gm consists of a
single point and is, thus, projective. Therefore, (Xs)Gm = φ−1((X0

s )Gm) is projective, completing the
proof. Therefore, Xs = Rep(Π0, α)λ//G(α) is pure.

7 Grothendieck-Lefschetz trace formula

We need the following lemma:

Lemma 7.1. Given complex numbers z1, z2, . . . , zn such that |zi| = 1 for all i, suppose the limit
limr→∞

∑n
i=1 z

r
i exists. Then, zi = 1 for all i.

Proof. We proceed by induction on n. Let L be the above limit. If L = 0, we can show that
limr→∞

∑n
i=1(zi/z1)r = 0. As the first term in the sum is 1, we are done by induction. Henceforth,

suppose L 6= 0. Consider the polynomial p(t) =
∏n
i=1(t − zi) =

∑n
i=0 cit

i for some ci ∈ C. Then, for
all r, 0 =

∑n
j=1 z

r
jp(zr) =

∑r
j=1

∑n
i=0 ciz

i+r
j . Taking the limit of this expression as r → ∞, we get

0 = L
∑n
i=0 ci = Lp(1), and as L 6= 0, we get p(1) = 0 showing that zi = 1 for some i. Thus, by

induction, the claim stands proven.

From Proposition 6.4, we have that nα(q) = qqQ(α)−1|Xs(Fq)|. By [12, Proposition 1.15], we know
that nα(q) is a polynomial in q with integer coefficients. (The proof uses the Krull-Schmidt theorem
and a recurrence relation between the number of absolutely indecomposable represetations of different
dimensions.) Thus, we have that |Xs(Fq)| =

∑
i∈S biq

i for some bi ∈ Z and S is a finite set of integers
(possibly negative). We want to show that bi ≥ 0 for all i. The Grothendieck-Lefschetz trace formula
(see [6, Theorem 3.1]) for smooth k-schemes of dimension d says that:

|X(Fqr)| =
2d∑
i=0

(−1)i Tr(F r;H i
c(Xs,Ql)),
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where F : Xs → Xs is the Frobenius and l is a prime not dividing q. We’ll apply this formula for our
variety Xs. Let βj = dimQl(H i

c(Xs,Ql)). By purity, we know that all the eigenvalues of the action of
F on H i

c(Xs,Ql) are of the form εi,jq
i/2 for some |εi,j | = 1 for all 1 ≤ j ≤ βi. Thus, we get:

∑
i∈S

biq
ri = |Xs(Frq)| =

2 dim(Xs)∑
i=0

βi∑
j=1

εri,jq
ri/2.

As both the sides are equal for all positive integers r, dividing by qrd on both sides gives that bi = 0 for
all i > d, and bd = limr→∞

∑β2d
j=1 ε

r
2d,j . By the above lemma, we get that ε2d,j = 1 for all 1 ≤ j ≤ β2d.

Subtracting the leading term corresponding to qrd on both sides and proceeding in exactly the same
fashion, we get that εi,j = 1 for all i and j, and so, in particular, bi ≥ 0 for all i. This shows that all
the coefficients of the polynomial nα are non-negative, thus completing the proof.

Theorem 7.2. For any prime power q, we have:

nα(q) = qqQ(α)−1
2d∑
i=0

dim(H2i
c (Xs,Ql))qi. (2)

8 Examples

1. Consider the Dynkin quiver An+1 with vertices {1, 2, . . . , n+1} and arrows i→ i+1 for 1 ≤ i ≤ n.
Let α = (1, 1, . . . , 1). A linear map between one dimensional vector spaces is multiplication by a
scalar, and so, a representation for Q of dimension α is the same as a tuple (x1, x2, . . . , xn) ∈ Fnq ,
where xi corresponds to the map for the arrow i → i + 1. Such a representation of Q is
indecomposable if and only if none of the linear maps xi 6= 0. Upto isomorphism, there is just a
unique such representation (1, 1, . . . , 1), and so, nα(q) = 1.
Going by our strategy above, choose λ = (1, 1, . . . , 1,−n) which is generic with respect to α.
Then, nα(q) = qqQ(α)−1|X(Fq)|, where X = Rep(Πλ, α)λ//G(α). We have qQ(α) = n− (n−1) =
1. Next, let P denote the ring of regular functions on Rep(Πλ, α). Then, P is a polynomial ring
on 2n variables, one corresponding to each edge in the double quiver Q, modulo the defining
relation for Πλ. More precisely:

P = k[x1, x2, . . . , xn, y1, y2, . . . , yn]
(x1y1 − 1, x2y2 − x1y1 − 1, . . . , xnyn − xn−1yn−1 − 1, xnyn − n) .

As all the arrows correspond to invertible maps (they are multiplications by non-zero scalars),
every representation of Πλ is simple and, hence, stable. Therefore X = Rep(Πλ, α)//G(α), and
so,

X = Spec(PG(α)) = Spec
( k[x1y1, x2y2, . . . , xnyn]

(x1y1 − 1, x2y2 − x1y1 − 1, . . . , xnyn − xn−1yn−1 − 1, xnyn − n)
)

which is isomorphic to Spec(k), and thus, |X(Fq)| = 1, verifying that nα(q) = 1.

2. Consider the quiver with 2 vertices a and b, 1 loop at a and 1 edge from a to b. Let α = (1, 1).
A representation for Q is indecomposable if and only if the linear map from a to b is non-zero.
An isomorphism class of such indecomposable representations is chosen by normalising the edge
from a to b to correspond to the linear map 1 and choosing the other map arbitrarily. It follows
that nα(q) = q.
Next, choose λ = (1,−1). We have qQ(α) = 1− 1 = 0. Proceeding as in the previous case, if A
denotes the ring of regular functions on Rep(Πλ, α), we have:

A = k[e, f, x, y]
(ef − 1) ,
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where e and f correspond to the arrows between a and b, whereas x and y correspond to the
two loops at a. Again, all representations are stable, and so,

X = Spec(AG(α)) = Spec
(k[x, y, ef ]

(ef − 1)
)
∼= Spec(k[x, y]) = A2,

and thus, |X(Fq)| = q2, giving that nα(q) = qqQ(α)−1|X(Fq)| = q.

Remark 8.1. In both of the examples, the final point count can also be verified from the trace formula
using the fact that for the affine space An, the cohomology is concentrated in dimension 2n.
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